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Abstract

We discuss a family of clusters C corresponding to the region whose boundary is formed

by a fractional Brownian path y(i) and by the moving average function ỹn(i) ≡ 1
n

∑n−1

k=0 y(i −

k). Our model generates fractal directed patterns showing spatio-temporal complexity, and we

demonstrate that the cluster area, length and duration exhibit the characteristic scaling behavior of

SOC clusters. The function Cn(i) acts as a magnifying lens, zooming in (or out) the ‘avalanches’

formed by the cluster construction rule, where the magnifying power of the zoom is set by the

value of the amplitude window n. On the basis of the construction rule of the clusters Cn(i) ≡

y(i) − ỹn(i) and of the relationship among the exponents, we hypothesize that our model might

be considered to be a generalized stochastic directed model, including the Dhar–Ramaswamy

(DR) model and the stochastic models as particular cases. As in the DR model, the growth and

annihilation of our clusters are obtained from the set of intersections of two random walk paths,

and we argue that our model is a variant of the directed self-organized criticality scheme of the

DR model.
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Random processes are easily described for systems where the number of basic ran-

dom components becomes large, i.e., their size is negligible and thus interaction among
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them can be disregarded. In real extended dynamical systems, decorrelation does not

hold and the evolution occurs through a critical behavior where interaction is strong and

statistical scaling properties are highly nontrivial. A breakthrough in the understanding

and description of long-range space-time correlation is represented by the self-organized

criticality (SOC) model proposed in Refs. [1,2] and in the literature that consequently

Fourished [3–20].

The SOC model has demonstrated the ability to describe time–space correlated

evolution of several critical phenomena as interface depinning [8], the Bak–Sneppen

evolution model [9], the earthquake model [10] and the forest-Gre model [11]. The

emergence of spatio-temporal complex patterns, initiating at extremal sites rather than

at randomly chosen sites, has been furthermore established as a characteristic signature

of self-organized critical evolution [12,13,15].

Sandpile models are cellular automata (CA) with an integer or continuous variable zi
deGned on a d-dimensional lattice of size L . At each time step a particle (or energy)

is added to a randomly chosen site, until the variable zi, which denotes the number of

grains (or the energy) at site i reaches the threshold value zc. When this occurs the

site “relaxes”, i.e.,

zi → zi − zc (1)

and particles are isotropically transferred to the nearest neighbors

zi′ → zi′ + yi′ : (2)

The relaxation of a site can induce a number of other sites to relax in turn if, because

of the particles received, they exceed the threshold. From the moment a site topples, the

addition of particles stops until all sites have relaxed (zi ¡zc for all i). This condition

assures that the driving force is ‘slow’ being the driving time exceedingly longer than

the characteristic time of toppling instances. The sequence of toppling events during this

interval constitutes an avalanche. For conservative models, the number of transferred

particles equals the number of particles lost by the relaxing site (
∑

yj = zc) and

dissipation occurs only at boundary, from which particles can escape the system. Under

these conditions the system reaches a stationary state characterized by a sequence of

avalanches. Since the SOC algorithm is implemented basically as a cellular automaton,

the cluster growth is intrinsically of diKusive nature [21–23].

The total number of toppling sites s, the avalanche diameter l, and the avalanche

lifetime � are usually used to study the dynamics underlying the avalanche. The quanti-

ties s, l and � are related by power law: s ∼ �Ds=z and l ∼ �z, Ds and z are, respectively,

the avalanche dimension exponent and the dynamical exponent.

The pdf for s, l and � scale, respectively, as

P(s) ∼ s−�sf(s=sc) ; (3)

P(l) ∼ l−�lf(l=lc) ; (4)

P(�) ∼ �−�tf(�=�c) : (5)
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Fig. 1. Directed sandpile models on a lattice with Gnite L. Grains from the active sites in the row t topple

onto sites in row t + 1.

Using the above set of equation, one obtains the following relationships among the

SOC exponents

�t = z�l ; (6)

(�t − 1)z = (�s − 1)Ds : (7)

In its simplest version, the Dhar–Ramaswamy (DR) directed sandpile model [6,7] can

be described assuming that the system is driven by particles added at the top layer

i = 0 and removed from the bottom layer i = L (see Fig. 1). The preferred direction is

achieved using still Eq. (1), but adopting instead of Eq. (2), the following:

zi′ → zi′ + yi′(i
′ ¿i) : (8)

The DR cluster is schematically represented in Fig. 1. As has been observed in Ref. [6],

the cluster corresponds to the region formed by the path of two annihilating random

walkers starting at the site where the cluster initiates. In this sense the DR cluster are

analogous to the directed percolation clusters of Domany and Kinzel [24–26]. The DR

model admits analytical solution in every dimension. For the two-dimensional case, the

cluster exponents are z = 1, Ds = 3
2
�l = �t = 3

2
, �s = 4

3
.

Other interesting variants of the original model of Bak et al. are the stochastic models

[14–17]. The essential feature of the Manna model is that the toppling is replaced by

a ‘reaction’ at a given site i followed by a random reallocation of scattered particles

among the neighbors. Recently, Dhar has demonstrated that the Manna sandpile model

satisGes the Abelian property [18]. Two variants, known as stochastic directed models

(SDM) of the Dhar–Ramaswamy model have been proposed in Ref. [17]. Where two

diKerent stochastic toppling rules, the exclusive and the non-exclusive, are introduced

in the DR model. The values of the cluster exponents are �s =1:42, Ds =1:72, �t =1:70
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for the exclusive SDM and �s = 1:43, Ds = 1:75, �t = 1:70 for the non-exclusive SDM.

The authors conclude that the SDM and the DR model belong to diKerent universality

classes. In general, for stochastic models, each site is characterized by an inGnite stack

of number that according to some simple stochastic rules address the grains towards a

particular set of sites.

In the present work, we propose a family of stochastic directed clusters generated by

fractional Brownian paths with diKerent correlation properties. We show that the cluster

area, length and duration exhibit the characteristic scaling behavior of SOC clusters. We

calculate ‘exactly’ the characteristic exponents z, Ds �l, �t , �s in the two-dimensional

case for any value of the correlation exponent of the generalized fractional Brownian

motion: z=1, Ds =1+H , �l = �t =2−H ; �s =2=(1+H). The previous values, for the

case of uncorrelated Brownian motion (the simple random walk H =0:5) coincide with

the exponents of the DR model. According to our model, with the toppling rules of

Ref. [17], a random walk with correlation exponent H ¡ 0:5, i.e., with a path variance

varying with time less than in a fully uncorrelated Brownian motion, might account

for the values of the exponents.

To achieve our goal, we use a generalized Brownian walk y(i) deGned by y(i) ≡∑i−1
k=0 �k , where the steps �k are taken from a discrete Gaussian process with 〈�k〉 = 0

and 〈�2
k〉 = � and the brackets 〈· · ·〉 denote the ensemble average. The mean square

displacement of y(i) scales with Ni as 〈[y(i)]2〉 ∼ (Ni)2H , where H is the Hurst

exponent (0¡H ¡ 1). The moving average function ỹn(i) is

ỹn(i) ≡
1

n

n−1∑

k=0

y(i − k) (9)

which is a linear operator whose output is still a generalized Brownian motion, but

now with the high-frequency components of the signal averaged out according to the

window amplitude n [28].

In order to characterize the clusters C corresponding to the regions bounded by y(i)

and ỹn(i) in terms of the characteristic exponents of SOC systems, we deGne for each

cluster the following quantities (Fig. 2 and Fig. 3):

(i) Cluster length ‘j:

‘j ≡

ic( j+1)∑

i=ic( j)

�‘(i) ; (10)

(ii) Cluster lifetime �j:

�j ≡ ic(j + 1) − ic(j) ; (11)

(iii) Cluster area sj:

sj ≡

ic( j+1)∑

i=ic( j)

|y(i) − ỹn(i)|Ni ; (12)
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Fig. 2. Directed sandpile models on a inGnite lattice. The functions yn(i) and ỹn(i) are shown. In this Ggure

the grid does not coincide with the lattice where the instances of toppling take place.

Fig. 3. The signal y(ti) for the case H = 0:5 and the moving average function ỹn(ti) shown with four

diKerent averaging box sizes, (a) n = 200, (b) 600, (c) 1000, (d) 2000. The shaded area in (d) represents

a typical cluster.

where the index j refers to each cluster, ic(j) and ic(j+1) are the values of the index

i corresponding to two subsequent intersections between ỹn(i) and y(i) and Ni is the

elementary time interval corresponding to each step of the random walker.
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Let ‘ ≡ 〈‘j〉� and s ≡ 〈sj〉� indicate the average value respectively of the clus-

ter length and area over the ensemble C� of the clusters having duration �. Log–log

plots of the cluster length ‘ and the cluster area s plotted against the cluster lifetime

� for long-range correlated time series are consistent with the following power-law

relationships:

‘ ∼ � ‘ [ ‘ = 1] (13)

and

s ∼ � s [ s = 1 + H ] : (14)

Eq. (13) follows if the relationships Ny(i) ∼ (Ni)H and Nl(i) =
√

Ny(i)2 + Ni2 are

taken into account to calculate the length Nl(i) [Eq. (10)]. Eq. (14) follows if the

relationship:

ỹn(i) − y(i) ≈ DH

Ni

(Nn)2
∇2y(i) (15)

is taken into account [23], where DH is the generalized diKusion coePcient for frac-

tional Brownian motion, and the other quantities have the usual meaning. The term on

the right side of Eq. (15) is proportional to the average displacement of the random

walker Ni and thus varies as (Ni)H . Using Eq. (15) to calculate the sum of terms

ỹ(i)−yn(i) over the time interval �j ≡ ic(j+1)−ic(j) [Eq. (12)], the relation  s=1+H

follows.

Next we calculate the pdf P(�) of the cluster lifetime �. Our numerical results are

consistent with power-law behavior:

P(�) ∼ �−�; [� = 2 − H ] ; (16)

where P(�) is the Grst return pdf [27,12] of the crossing points between the signal y(i)

and the moving average function ỹn(i). Therefore Eq. (16) can be derived from the

relation 〈�〉 ≡ Nmax=N× between the mean time interval 〈�〉 and the total number of

crossing points N×. To express 〈�〉 in terms of Nmax, we write 〈�〉 ≡
∫ Nmax

1
�P(�)d� ∼

N
2−�
max . Similarly, we can express N× in terms of Nmax as N× ∼ N 1−H

max , which fol-

lows from the fact that the fractal dimension of the set of crossing points is 1 − H

(the co-dimension of the set of crossing points d − d× is equal to the sum of the

co-dimension 2 −H of the signal and the co-dimension 2 − 1 of the moving average).

Thus 2 − � = 1 − (1 − H).

The pdf P(�) with Eqs. (13) and (14), allows us to calculate the pdfs P(‘) and

P(s):

P(‘) = P(�(‘))
d�

d‘
∼ ‘−�; [� = 2 − H ] ; (17)

P(s) = P(�(s))
d�

ds
∼ s− ; [ = 2=(1 + H)] : (18)

Eq. (17) follows from the reasoning used above, while Eq. (18) follows on using

Eq. (14), allowing  to be expressed in terms of � and  s:

 =
� + 1 −  s

 s

=
2

1 + H
: (19)
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All Gve new exponents  ‘,  s, �, �,  satisfy relations (6) and (7). In particular, we

have for the dynamic exponent

z =  ‘ = 1 (20)

and for the avalanche exponent size

Ds=z =  s = 1 + H : (21)

For the pdf exponents we Gnd the analogs of Eqs. (3)–(5) to be

�l = � = 2 − H ; (22)

�t = � = 2 − H ; (23)

�s =  =
2

(1 + H)
: (24)

In summary, we Gnd ‘exact’ expressions for the exponents z, Ds �l, �t , �s in the

two-dimensional case for any value of the correlation exponent H of the generalized

fractional Brownian motion: z = 1, Ds = 1 + H , �l = �t = 2 − H ; �s = 2=(1 + H). The

previous exponents, for the case of uncorrelated Brownian motion (the simple random

walk H =0:5) coincide with the exponents of the DR model. With the toppling rules of

paper [17], a random walk is generated with correlation exponent H ¡ 0:5—i.e., with

a path variance changing with time less than the fully uncorrelated Brownian motion.

This is consistent, according to our picture, with diKerent values of the exponents of

the ‘stochastic’ SDM model compared to the ‘deterministic’ DR model. Other features

of the C clusters will be treated in a future work.
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