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The problem of finding the best strategy to immunize a population or a computer network with a
minimal number of immunization doses is of current interest. It has been accepted that the targeted
strategies on most central nodes are most efficient for model and real networks. We present a newly
developed graph-partitioning strategy which requires 5% to 50% fewer immunization doses compared to
the targeted strategy and achieves the same degree of immunization of the network. We explicitly
demonstrate the effectiveness of our proposed strategy on several model networks and also on real
networks.
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There is much interest in the question of how to immu-
nize a population, or a computer network such as the
Internet, with a minimal number of immunization doses.
This question is very important since in many cases the
number of immunization doses is limited or very expen-
sive. This question is mathematically equivalent to asking
how to fragment a given network with a minimum number
of node removals. To achieve this goal, many immuniza-
tion strategies have been developed recently [1–8], ranging
from local strategies, like acquaintance immunization [2]
to global strategies like targeted immunization [3]. Many
network structures have been studied, such as Erdős-Rényi
(ER) networks [9,10] and random regular graphs [11], but
most work focuses on networks with a broad degree dis-
tribution such as scale-free (SF) networks, which have
features in common with many real networks ranging
from the Internet to human contact patterns of importance
for the transmission of contagious diseases [6,7,12–15].

It is widely accepted that the most efficient immuniza-
tion strategies are based on targeted strategies [1–7]. The
basic idea of targeted strategies is first to rank the impor-
tance of nodes and then remove the nodes from highest
importance to lowest until the network becomes discon-
nected. The importance of nodes is often represented by
node degree or betweenness centrality, which is the fre-
quency of appearance of a node in the shortest paths
between other nodes [16,17]. The breakdown of the net-
work is quantified by the ratio F of the size of the largest
cluster to the total cluster size [3]. See also a related
definition of network breakdown used in social sciences
[18,19]. To further improve the targeted strategy, it was
suggested to apply this method adaptively by recalculating
the importance of nodes after every step of node removal
[3,4].

In this Letter we propose a novel ‘‘equal graph partition-
ing (EGP)’’ immunization strategy which we find to be
significantly better than targeted methods, with 5% to 50%
fewer immunization doses required (on the networks

studied here). Our method is based on the heuristic optimal
partitioning of graphs [20,21] and is motivated by
Refs. [18,22]. The main idea of the EGP is to fragment
the network into many connected subnetworks (clusters) of
approximately equal size. This strategy leads to the need to
immunize fewer nodes compared to the targeted strategies.
This is since in targeted strategies a broad distribution of
cluster sizes appears after fragmentation, including many
very small clusters. Hence, one wastes many immunization
doses to isolate these small clusters, which is unnecessary
in the EGP method. We confirm the improved efficiency of
our approach on ER and SF networks, random regular
graphs, and on several real networks.

The EGP immunization strategy is based on the nested
dissection (ND) algorithm, which was developed to solve
sparse systems of linear equations efficiently [20]. The
original ND algorithm can separate a network into two
equal-size clusters with a minimum number of nodes re-
moved. A network is first divided into three groups (Fig. 1):
first cluster, second cluster, and the group of nodes sepa-
rating the first and second clusters (separator group). To

FIG. 1. Diagram showing one attempt of moving nodes in
separator group. In (a) we try to move the top node in the
separators to group 1 and the result is shown in (b), where the
adjacent node of the moved node is dragged into separator group.
The bottom node in the separators is dragged to group 1 because
all its adjacent nodes are in group 1 and its existence in
separators becomes meaningless. After this trial, the size of
separator group is reduced from 2 to 1. Thus, this movement
is permitted.
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minimize the size of the separator group, the nodes in
separator group are attempted to be moved into the first
or second cluster. As a result, in each of these trials, the
adjacent nodes of the moved node may be dragged in or out
of the separator group. The movement is kept if the size of
the separator group after the movement is smaller than
before. This algorithm is applied iteratively until no further
optimization can be gained.

In our implementation of ND algorithm, we separate a
network into two clusters with arbitrary size ratio instead
of only equal sizes, with the number of separators mini-
mized. In this way, networks can be partitioned into any
number of same size clusters by applying the ND algorithm
on the network recursively. For example, to partition a
network into three equal-size clusters, first we partition
the network into two clusters with size ratio 2:1, then apply
another partition on the larger cluster with size ratio 1:1.
Thus, in order to immunize a network of size N nodes so
that only a small fraction F can be infected, one separates
the system into n � 1=F equal-size clusters. In contrast to
the targeted strategies which are based on local decisions,
the EGP immunization strategy is closer to global optimi-
zation [23].

We test the effectiveness of the EGP strategy by plotting
F versus q, the removal fraction of nodes, for ER, SF, and
random regular networks (Fig. 2) as well as for several real
networks (Fig. 3). We also compare (in Figs. 2 and 3)
between the efficiency of the EGP strategy to high degree
targeted (HD), high degree adaptive (HDA), and high

betweenness (HB) targeted strategies for immunization.
In the HDA strategy we apply the high degree targeted
method adaptively by recalculating the importance (the
node degree) of every node after each node removal. Two
values of the degree exponent �, 2.5 and 3.5, for SF net-
works are shown. In all four network models tested, our
EGP strategy exhibits clear advantage of less nodes to be
immunized compared to all targeted strategies (Fig. 2). The
curves of EGP strategy are far below curves of HDA, the
most effective known targeted strategy. Regarding the
threshold point qc, where F approaches 0, the EGP strategy
shows 30% to 50% improvement than nonadaptive and 5%
to 10% than adaptive targeted strategies [24].

We also test our EGP immunization strategy on four real
networks from different fields. Figure 3 shows simulation
results for the workplace network [25], the autonomous
system (AS) Internet network [26,27], the high energy
particle (HEP) physics citation network [28], and the
metabolic network [29]. The workplace network is ex-
tracted from a data set obtained from Statistics Sweden
[25] and consists of all geographical workplaces in Sweden
that can be linked with each other by having at least one
employee from each workplace sharing the same house-
hold. Household is defined as a married couple or a couple
having children together that are living in the same flat or
house [30]. This kind of network has been shown to be
important for the spreading of influenza [31] and is also
likely to be important for spreading of information and
rumors in society. The network has 310 136 nodes and
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FIG. 2 (color online). The fraction F of the size of the largest cluster that can be infected versus the fraction q of the immunized
nodes for HD, HDA, HB, and EGP strategies for (a) random regular graph with N � 104 and k � 4, (b) ER network with N � 104,
hki � 3:5, (c) SF network with N � 104, � � 2:5,and hki � 4:68, (d) SF network with N � 104, � � 3:5, and hki � 2:89. We show
also the error bars in F, which are derived from simulating realizations. The error bars for EGP are so small that they are barely seen.
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FIG. 3 (color online). The fraction F of the size of the largest cluster that can be infected versus the fraction of immunized nodes q
for HD, HDA, and EGP strategies for (a) the workplace network, (b) the AS Internet network, (c) high energy physics HEP network,
(d) metabolic network.
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906 260 links. In the example of Fig. 3(a), the advantage of
EGP (the value of q for which F � 0) is about 30% better
compared to the nonadaptive targeted strategy and 15%
better than the adaptive targeted strategy. The AS network
is obtained from the DIMES project [26], which deter-
mines the Internet network at the autonomous system or
interdomain level. This network has 20 556 nodes and
62 920 links and is very important in the study of computer
virus spreading. For the AS network, the EGP method
shows a larger improvement, about 50%, against both
adaptive and nonadaptive targeted strategies [Fig. 3(b)].
The HEP network contains high energy particle physics
citations from the hep-th section of arxiv.org [28]. In this
network, a node represents a published paper and a link
represents a citation between two papers. Simulation is
performed regardless of the direction of citations. This
network has 27 770 nodes and 352 807 links, which leads
to a high average degree of 12.7. For the HEP network, the
EGP algorithm shows an advantage of about 23% com-
pared to adaptive and 46% compared to nonadaptive tar-
geted strategies [Fig. 3(c)]. The metabolic network
describes the interactions between the metabolites of E.
coli in the course of the metabolic cycle, and has 2363
nodes and 5960 links [29]. From Fig. 3(d), this network is
special because, unlike most networks, the HD and HDA
curves of the metabolic network are almost the same,
suggesting that degree recalculation is not necessary dur-
ing the targeting process. However, the EGP method still
gives an advantage of about 20%. It should be noted that

the performance efficiency of the EGP is better in real
networks compared to model networks. This is probably
due to the structural behavior of the real networks that
represent communities making it easier for the EGP to
separate the networks into clusters compared to model
networks.

To further estimate the immunization effectiveness us-
ing the EGP strategy as compared to HD strategy, we also
studied the disease spreading behavior using the
susceptible-infectious-recovery (SIR) epidemic spreading
model [8,32] on SF model networks, the AS Internet net-
work, the workplace network, and the HEP network. The
SIR model is an epidemiological model widely used to
simulate the spreading of epidemics, i.e., number of people
infected with a contagious illness, in a closed population as
a function of time [33]. At every time step, the model
assumes a transition rate � for a susceptible person to
become infected, if an infected neighbor is present, and a
rate � for an infected person to become recovered or die.
The recovered person will never be infected again. The
simulation results are shown in Fig. 4. In the simulations
we use � � 0:2 and � � 0:05. For all networks studied
here, the infected fraction is significantly (5 to 10 times)
lower when using the EGP strategy compared to the HD
strategy with the same fraction of immunization doses.

Next, we study, for ER and SF networks, the dependence
of the threshold qc for different immunization strategies as
a function of the network parameters (Fig. 5). The thresh-
old qc is defined as the fraction of nodes immunized or
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FIG. 4 (color online). Infected network fraction Pi and recovered fraction Pr versus time for the SIR model [17]. Comparison
between HD and EGP strategies for (a) immunizing a fraction q � 0:12 of the nodes in a SF network with N � 104, � � 2:5,
(b) immunizing a fraction q � 0:02 in AS Internet network, (c) immunizing a fraction q � 0:065 of the nodes in the workplace
network, (d) immunizing a fraction q � 0:31 of the nodes in the HEP network.
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FIG. 5 (color online). The threshold qc versus average mode degree hki for HD, HDA, and the EGP strategies for (a) ER networks
with N � 104, (b) SF networks with N � 104 and � � 2:5, (c) random regular graph with N � 104, (d) the critical threshold qc versus
system size N for SF networks with � � 2:5 and ER networks with hki � 3.
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removed for which F � 0. It is expected that qc increases
with increasing the average degree hki, since it is harder to
fragment the network apart when more links between
nodes exist. The EGP method compared to adaptive high
degree strategy is more significant for lower values of hki.
This is due to the fact that when hki increases, the relation
between potential clusters becomes closer. More internal
nodes in potential clusters will have external links con-
necting to other clusters. Thus, it is harder to reduce the
size of the separator group. However, as noted above, this
effect seems to be less pronounced in real structured net-
works. We also study the dependence of qc on the system
size N. Figure 5(d) shows qc versus system size N for SF
networks with � � 2:5 and for ER networks with hki � 3.
The value of qc is affected by the finite size of the system.
When N increases, qc decreases and approaches its asymp-
totic value. However, the ratio between qc of EGP and
targeted strategies does not seem to be affected by N.

To summarize, we have developed and applied a new
EGP algorithm as an efficient network immunization strat-
egy that partitions a network into clusters of approxi-
mately equal size. This strategy saves a large amount of
immunization doses since immunizing small clusters is not
needed. We find that our method performs significantly
superiorly compared to previously known effective tar-
geted strategies.

The study of the workplace network was approved by
the Regional Ethical Review board in Stockholm, record
2004/2:9. We thank ONR, Israel Complexity Center, and
the Israel Science Foundation for support.
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[8] M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Phys.

Rev. Lett. 90, 028701 (2003).
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