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We review results on the scaling of the optimal path length /,5¢ in random networks with
weighted links or nodes. We refer to such networks as “weighted” or “disordered” networks.
The optimal path is the path with minimum sum of the weights. In strong disorder, where the
maximal weight along the path dominates the sum, we find that ¢, increases dramatically
compared to the known small-world result for the minimum distance ¢y, ~ log N, where NV
is the number of nodes. For Erdés-Rényi (ER) networks £y ~ N'/3, while for scale free (SF)
networks, with degree distribution P(k) ~ k=*, we find that fop; scales as NA=3)/A=1) for
3 < A< 4andas N'/3 for A > 4. Thus, for these networks, the small-world nature is destroyed.
For 2 < A < 3 in contrary, our numerical results suggest that £,y scales as N , representing
still a small world. We also find numerically that for weak disorder op ~ In N for ER models
as well as for SF networks. We also review the transition between the strong and weak disorder
regimes in the scaling properties of /., for ER and SF networks and for a general distribution
of weights 7, P(7). For a weight distribution of the form P(7) = 1/(a7) with (Tmin < 7 < Tmax)
and @ = In Typax/Tmin, we find that there is a crossover network size N* = N*(a) at which the
transition occurs. For N < N* the scaling behavior of (., is in the strong disorder regime,
while for N > N* the scaling behavior is in the weak disorder regime. The value of N* can
be determined from the expression o, (N*) = ap., where £+, is the optimal path length in the
limit of strong disorder, A = ap. — oo and p, is the percolation threshold of the network. We
suggest that for any P(7) the distribution of optimal path lengths has a universal form which is
controlled by the scaling parameter Z = ¢, /A where A = p.7./ fOTC 7P(7)dr plays the role of the
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disorder strength and 7. is defined by [J° P(7)dr = pc. In case P(1) ~ 1/(at), the equation for
A is reduced to A = ap.. The relation for A is derived analytically and supported by numerical
simulations for Erdés—Rényi and scale-free graphs. We also determine which form of P(7) can
lead to strong disorder A — co. We then study the minimum spanning tree (MST), which is the
subset of links of the network connecting all nodes of the network such that it minimizes the
sum of their weights. We show that the minimum spanning tree (MST) in the strong disorder
limit is composed of percolation clusters, which we regard as “super-nodes”, interconnected
by a scale-free tree. The MST is also considered to be the skeleton of the network where the
main transport occurs. We furthermore show that the MST can be partitioned into two distinct
components, having significantly different transport properties, characterized by centrality —
number of times a node (or link) is used by transport paths. One component the superhighways,
for which the nodes (or links) with high centrality dominate, corresponds to the largest cluster
at the percolation threshold (incipient infinite percolation cluster) which is a subset of the MST.
The other component, roads, includes the remaining nodes, low centrality nodes dominate. We
find also that the distribution of the centrality for the incipient infinite percolation cluster
satisfies a power law, with an exponent smaller than that for the entire MST. We demonstrate
the significance identifying the superhighways by showing that one can improve significantly the

global transport by improving a very small fraction of the network, the superhighways.

Keywords: Minimum spanning tree; percolation; scale-free; optimization.

1. Introduction

Recently much attention has been focused on
the topic of complex networks which characterize
many biological, social, and communication sys-
tems [Albert & Barabdsi, 2002; Mendes et al., 2003;
Pastor-Satorras & Vespignani, 2004]. The networks
are represented by nodes associated to individu-
als, organizations, or computers and by links rep-
resenting their interactions. The classical model for
random networks is the Erdés-Rényi (ER) model
[Erdds & Rényi, 1959, 1960; Bollobas, 1985]. An
important quantity characterizing networks is the
average distance (minimal hopping) fni, between
two nodes in the network of total N nodes. For
the Erdés—Rényi network £, scales as In N [Bol-
lobas, 1985], which leads to the concept of “small
worlds” or “six degrees of separation”. For scale-free
(SF) [Albert & Barabasi, 2002] networks £y, scales
as Inln NV, this leads to the concept of ultra small
worlds [Cohen et al., 2002; Mendes et al., 2003].

In most studies, all links in the network are
regarded as identical and thus a crucial parame-
ter for information flow including efficient routing,
searching and transport is f,i,. In practice, how-
ever, the weights (e.g. the quality or cost) of links
are usually not equal [Barrat et al., 2004; Boccaletti
et al., 2006].

Thus the length of the optimal path £gp¢, min-
imizing the sum of weights, is usually longer than

limin- For example, the cost could be the time
required to transit the link. There are often many
traffic routes from site A to site B with a set of
transit time 7;, associated with each link along the
path. The fastest (optimal) path is the one for which
>, Ti is a minimum, and often the optimal path
has more links than the shortest path. In many
cases, the selection of the path is controlled by most
of the weights (e.g. total cost) contributing to the
sum. This case corresponds to weak disorder (WD).
However, in other cases, for example when the dis-
tribution of disorder is very broad a single weight
dominates the sum. This situation — in which one
link controls the selection of the path — is called
the strong disorder limit (SD).

For a recent quantitative criterion for SD and
WD, see [Chen et al., 2006] and Sec. 4.2 in this
article.

The strong disorder is relevant e.g. for com-
puter and traffic networks, since the slowest link in
communication networks determines the connection
speed. An example for SD is when a transmission
at a constant high rate is needed (e.g. in broadcast-
ing video records over the Internet). In this case
the narrowest band link in the path between the
transmitter and receiver controls the rate of trans-
mission. This limit is also called the “ultrametric”
limit and we refer to the optimal path in this limit
as the min-max path.



Optimal Path and Minimal Spanning Trees in Random Weighted Networks 2217

The SD limit is also related to the minimal
spanning tree which includes all optimal paths
between all pairs of sites in the network. The disor-
der on a network is usually implemented from a dis-
tribution P(7) ~ 1/(at), where 1 < 7 < e [Porto
et al., 1999; Braunstein et al., 2001; Cieplak et al.,
1996; Braunstein et al., 2003]. We assign to each
link of the network a random number 7, uniformly
distributed between 0 and 1. The cost associated
with link ¢ is then 7; = exp(ar;) where a is the
parameter which controls the broadness of the dis-
tribution of link costs. The parameter a represents
the strength of disorder. The limit a — oo is the
strong disorder limit, since for this case clearly only
one link dominates the cost of the path. The strong
disorder limit (SD) can be implemented in a disor-
dered media by assigning to each link a potential
barrier ¢; so that 7; is the time to cross this barrier
in a thermal activation process. Thus 7; = /KT
where K is the Boltzmann constant and 7' is abso-
lute temperature. The optimal path corresponds to
the minimum (>, 7;) over all possible paths. We can
define disorder strength a = 1/KT. When a — oo,
only the largest 7; dominates the sum. Thus, 7" — 0
(very low temperature) corresponds to the strong
disorder limit.

There are distinct scaling relationships between
the length of the average optimal path f,,; and
the network size (number of nodes) N depend-
ing on whether the network is strongly or weakly
disordered [Porto et al., 1999; Braunstein et al.,
2003]. It was shown using percolation arguments
(see Sec. 4) that for strong disorder [Braunstein
et al.,, 2003], lopy ~ NY»' where vop = 1/3
for Erdés-Rényi (ER) random networks [Erdds &
Rényi, 1959] and for scale-free (SF) [Albert &
Barabdsi, 2002] networks with A > 4, where \ is
the exponent characterizing the power law decay
of the degree distribution. For SF networks with
3 <A< 4 Uppt = (A=3)/(A=1). For 2 <
A < 3, percolation arguments do not work, but
the numerical results suggest op; ~ In*~! N, which
is again much larger than the ultra small result
for the shortest path fni; ~ Inln N found for
2 < XA < 3 in [Cohen & Havlin, 2003]. When
the weights are taken from a uniform distribu-
tion we are in the weak disorder limit. In this
case lopy ~ InN for both ER and SF for all
values of A [Braunstein et al., 2003]. For 2 <
A < 3, this result is significantly different from
the ultra small-world result found for unweighed
networks.

Porto [Porto et al., 1999] considered the opti-
mal path transition from weak to strong disorder
for 2-D and 3-D lattices, and found a crossover
in the scaling properties of the optimal path that
depends on the disorder strength a, as well as the
lattice size L (see also [Buldyrev et al., 2006]). Sim-
ilar to regular lattices, there exists for any finite
a, a crossover network size N*(a) such that for
N <« N*(a), the scaling properties of the optimal
path are in the strong disorder regime while for
N > N*(a), the network is in the weak disorder
regime. The function N*(a) was evaluated. More-
over, a general criterion to determine which form
of P(7) can lead to strong disorder, and a general
condition when strong or weak disorder occurs was
found analytically [Chen et al., 2006]. The deriva-
tion was supported by extensive simulations.

The study of the distribution of the length
of the optimal paths in a network was reported
in [Kalisky et al., 2005]. It was found that the
distribution has the scaling form P({opt, N,a) ~
(1/0o0)G(Lopt /loo, (1/pc)(Uso/a)), Where log is Lopt
for a — oo and p. is the percolation threshold.
It was also shown that a single parameter Z =
(1/pe)(loo/a) determines the functional form of the
distribution. Importantly, it was found [Chen et al.,
2006] that for all P(7) that possess a strong-weak
disorder crossover, the distributions P(fopt) of the
optimal path lengths display the same universal
behavior.

Another interesting question is about a pos-
sible origin of scale-free degree distribution with
A = 2.5 in some real world networks. Kalisky
[Kalisky et al., 2006] introduced a simple process
that generates random scale-free networks with A =
2.5 from weighted Erdés—Rényi graphs [Erdés &
Rényi, 1960]. They found that the minimum span-
ning tree (MST) on an Erdés-Rényi graph is com-
posed of percolation clusters, which we regard as
“super nodes”, interconnected by a scale-free tree
with A = 2.5.

Known as the tree with the minimum weight
among all possible spanning tree, the MST is also
the union of all “strong disorder” optimal paths
between any two nodes [Barabasi, 1996; Dobrin &
Duxbury, 2001; Cieplak et al., 1996; Porto et al.,
1999; Braunstein et al., 2003; Wu et al., 2005]. As
the global optimal tree, the MST plays a major
role for transport process, which is widely used
in different fields, such as the design and oper-
ation of communication networks, the traveling
salesman problem, the protein interaction problem,



2218 L. A. Braunstein et al.

optimal traffic flow, and economic networks [Khan
et al., 2003; Skiena, 1990; Fredman & Tarjan, 1987;
Kruskal, 1956; Macdonald et al., 2005; Bonanno
et al., 2003; Onnela et al., 2003]. One important
question in network transport is how to identify the
nodes or links that are more important than others.
A relevant quantity that characterizes transport in
networks is the betweenness centrality, C, which is
the number of times a node (or link) used by all
optimal paths between all pairs of nodes [Newman,
2001a, 2001b; Goh et al., 2001; Kim et al., 2004].
For simplicity we call the “betweenness centrality”
here “centrality” and we use the notation “nodes”
but similar results have been obtained for links. The
centrality, C', quantifies the “importance” of a node
for transport in the network. Moreover, identify-
ing the nodes with high C enables us to improve
their transport capacity and thus improve the global
transport in the network. The probability density
function (pdf) of C' was studied on the MST for
both SF [Barabasi & Albert, 1999] and ER [Erdés
& Rényi, 1959, 1960] networks and found to sat-
isfy a power law, Pyst(C) ~ C—ST | with st
close to 2 [Goh et al., 2005; Kim et al., 2004]. How-
ever, [Wu et al., 2006] found that a sub-network of
the MST,! the infinite incipient percolation cluster
(IIC) has a significantly higher average C' than the
entire MST — i.e. the set of nodes inside the I1C
are typically used by transport paths more often
than other nodes in the MST (see Sec. 9). In this
sense the IIC can be viewed as a set of superhigh-
ways (SHW) in the MST. The nodes on the MST
which are not in the IIC are called roads, due to
their analogy with roads which are not superhigh-
ways (usually used by local residents). Wu et al.
[2006] demonstrated the impact of this finding by
showing that improving the capacity of the super-
highways (IIC) is significantly a better strategy to
enhance global transport compared to improving
the same number of links of the highest C' in the
MST, although they have higher C'.2 This counter-
intuitive result shows the advantage of identifying
the IIC subsystem, which is very small and of order
zero compared to the full network.3

2. Algorithms
2.1.

To construct an ER network of size N with average
node degree (k), we start with (k)N/2 edges and
randomly pick a pair of nodes from the total possi-
ble N(N — 1)/2 pairs to connect with an edge. The
only condition we impose is that there cannot be
multiple edges between two nodes. When (k) > 1
almost all nodes of the network will be connected
with high probability.

To generate scale-free (SF) graphs of size N, we
employ the Molloy—Reed algorithm [Molloy & Reed,
1998]. Initially the degree of each node is chosen
according to a scale-free distribution, where each
node is given a number of open links or “stubs”
according to its degree. Then, stubs from all nodes
of the network are interconnected randomly to each
other with two constraints that there are no multi-
ple edges between two nodes and that there are no
looped edges with identical ends. The exact form of
the degree distribution is usually taken to be

Construction of the networks

Pk)=ck™ k=m,...,K (1)

where m and K are the minimal and maximal
degrees, and ¢ ~ (A — 1)m*~! is a normaliza-
tion constant. For real networks with finite size,
the highest degree K depends on network size N:
K ~ mNYO=D thus creating a “natural” cut-
off for the highest possible degree. When m > 1
there is a high probability that the network is fully
connected.

2.2. Daykstra’s algorithm

The Dijkstra’s algorithm [Cormen et al., 1990] is
used in general to find the optimal path, when the
weights are drawn from an arbitrary distribution.
The search for the optimal path follows a procedure
akin to “burning” where the “fire” starts from our
chosen origin. At the beginning, all nodes are given
a distance oo except the origin which is given a dis-
tance 0. At each step we choose the next unburned

IThe IIC contains loops in lattices in dimension d below 6. However, for networks (d = o), in the IIC loops can be neglegted
and in this case for large NV the IIC must be a subset of the MST. In our simulations, we found that more than 99% links of
IIC belong to MST. For lattices, we only choose the part of the IIC that belongs to the MST.

2The overlap between the two groups is about 30% for ER networks of size N = 8192.

3The ratio (N11¢/NMmsT) approaches zero for large NyisT = N due to the fractal nature of the I1C. Indeed, Ny ~ N2/3
both for ER [Erdés & Rényi, 1959] and for SF with A\ > 4 [Cohen]. For SF with A\ = 3.5, Njjc ~ N%% [Cohen] and for the
L x L square lattice Nyj¢ ~ L%'/48 ~ N91/9 [Bunde & Havlin, 1996].
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node which is nearest to the origin, and “burn” it,
while updating the optimal distance to all its neigh-
bors. The optimal distance of a neighbor is updated
only if reaching it from the current burning node
gives a total path length that is shorter than its
current distance.

2.3.

Next, we describe a numerical method for comput-
ing lopt between any two nodes in strong disorder
[Dobrin & Duxbury, 2001; Braunstein et al., 2001].
In this case the sum of the weights must be com-
pletely dominated by the largest weight. Sometimes
this condition is referred to as ultrametric. We can
satisfy this condition assigning weights to all the
links 7; = exp(ar;) choosing a to be so large, that
any two links will have different binary orders of
magnitude. For example, if we can select 0 < r; < 1
from a uniform distribution, using a 48-bit random
number generator, there will be no two identical val-
ues of ; in a system of any size that we study. In this
case Ar; > 27 and we can select a > 2*¥1n2 to

Ultrametric optimization
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Fig. 1.

guarantee the strong disorder limit. To find the opti-
mal paths under the ultrametric condition, we start
from one node (the origin — see Fig. 1) and visit
all the other nodes connected to the origin using a
burning algorithm. If a node at distance ¢y (from the
origin) is being visited for the first time, this node
will be assigned a list Sy of weights 7p;, 1 = 1--- ¥
of the links by which we reach that node sorted in
descending order. Since Ty; = exp(arg;), we can use
a list of random numbers ry; instead.

So = {701,702,703; - -, T0ly }» (2)

with rg; > rg;41 for all j. If we reach a node for a
second time by another path of length ¢, we define
for this path a new list S,

ST (3)

and compare it with Sy previously defined for this
node.

Different sequences can have weights in com-
mon because some paths have links in common
because of the loops, so it is not enough to identify
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In (a) we show schematically a network consisting of five nodes (A, B, C, D and E). The links between them are

shown in dashed lines. The origin (A) is marked in gray. All links were assigned random weights, shown beside the links. In
(b) one node (C) has been visited for the first time (marked in black) and assigned the sequence (8) of length ¢ = 1. The path
is marked by a solid arrow. Notice that there is no other path going from the origin (A) to this node (C) so fopt = 1 for that
path. In (c) another node (B) is visited for the first time (marked in black) and assigned the sequence (10, 8) of length 2. The
sequence has the information of all the weights of that path arranged in decreasing order. In (d) another node (D) is visited
for the first time and assigned the sequence (8,7) of length 2. In (e), node (B) visited in (¢) with sequence (10,8) is visited
again with sequence (8,7,6). The last sequence is smaller than the previous sequence (10,8) so that node (B) is reassigned
the sequence (8,7, 6) of length 3 [see Eq. (4)]. The new path is shown as a solid line. In (f) a new node (E) is assigned with
sequence (8,7,4). In (g) node (B) is reached for the third time and reassigned the sequence (8, 7,4, 3) of length 4. The optimal
path for this configuration from A to B is denoted by the solid arrows in (g) (after [Havlin et al., 2005]).
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the sequence by its maximum weight; in this case it
must also be compared with the second maximum,
the third maximum, etc. We define S, < S, if there
exists a value m, 1 < m < min(¢y,¢,) such that

rpj =7rg; for1<j<m and

Tpj < Tqj

for i — (4)
or j =m,
or if £, > {, and 1,; = ry; for all j < £, If
S1 < Sy, we replace Sy by S1. The procedure con-
tinues until all paths have been explored and com-
pared. At this point, Sp = Sopt, where Sgpe is the
sequence of weights for the optimal path of length
Lopt- A schematic representation of this ultrametric
algorithm is presented in Fig. 1. This algorithm is
slow and memory consuming since we have to keep
track of a sequence of values and the rank. Using
this method, we obtain systems of sizes up to 22
nodes, typically 10° realizations of disorder.

2.4. Bombing optimization

This algorithm allows to compute /o (and other
relevant quantities) between any two nodes in
strong disorder limit and was introduced by Cieplak
et al. [1996]. Basically the algorithm does the
following

1. Sort the edges by descending weight.

2. If the removal of the highest weight edge will not
disconnect A from B — remove it.

3. Go back to step 2 until all edges have been pro-
cessed.

Since the edge weights are random, so is the order-
ing. Therefore, in fact, one does not need even to
select edge weights and “bombing” algorithm can
be simplified by removing randomly chosen edges
one at a time, provided that their removal does not
break the connectivity between the two nodes. The
bottleneck of this algorithm is checking the connec-
tivity after each removal. To speed it up, we first
compute the minimal path between nodes A and
B using Dijkstra’s algorithm. Then we must check
the connectivity only if the removed bond belongs
to this path. In this case, we attempt to compute a
new minimal path between A and B on the subset of
remaining bonds. If our attempt fails, it means that
the removal of this bond would destroy the connec-
tivity between A and B. Therefore, we restore this
bond and exclude it from the list of bonds subject to
random removal. With this improvement we could
reach systems of sizes up to 2'% nodes and 10° real-
izations of weight disorder.

2.5. The minitmum spanning
tree (MST)

The MST on a weighted graph is a tree that
reaches all nodes of the graph and for which the
sum of the weights of all the links or nodes (total
weight) is minimal. Also, in the “strong disorder”
limit, each path between two sites on the MST
is the optimal path [Cieplak et al., 1996; Dobrin
& Duxbury, 2001], meaning that along this path
the maximum barrier (weight) is the smallest pos-
sible [Dobrin & Duxbury, 2001; Braunstein et al.,
2003; Sreenivasan et al., 2004]. Standard algorithms
for finding the MST are Prim’s algorithm [Cormen
et al., 1990] which resembles invasion percolation
[Bunde & Havlin, 1996] and Kruskal’s algorithm
[Cormen et al., 1990]. First we explain the Prim’s
algorithm.

(a) Create a tree containing a single vertex, chosen
arbitrarily from the graph.

(b) Create a set containing all the edges in the
graph.

(c) Remove from the set an edge with minimum
weight that connects a vertex in the tree with
a vertex not in the tree.

(d) Add that edge to the tree.

(e) Repeat steps (c-d) until every edge in the set
connects two vertices in the tree.

Note that two nodes in the tree cannot be connected
again by a link, thus forbidding loops to be formed.
Prim’s algorithm essentially starts by choosing a
random node in the network, and then growing out-
ward to the “cheapest” link which is adjacent to the
starting node. Each link which is “invaded” is added
to the growing cluster (tree), and the process is iter-
ated until every site has been reached. Bonds can
only be invaded if they do not produce a loop, so
that the tree structure is maintained [20]. This pro-
cess resembles invasion percolation with trapping
studied in the physics literature [Barabési, 1996;
Porto et al., 1997]. A direct consequence of the inva-
sion process is that a path between two sites A and
B on the MST is the path whose maximum weight
is minimal, i.e. the minimal-barrier path. This is
because if there were another path with a smaller
barrier (i.e. maximal weight link) connecting A and
B, the invasion process would have chosen that path
to be on the MST instead. The minimal-barrier
path is important in cases where the “bottleneck”
link is important. For example, in streaming video
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broadcast on the Internet, it is important that each
link along the path to the client will have enough
capacity to support the transmission rate, and even
one link with not enough bandwidth can become a
bottleneck and block the transmission. In this case
we will choose the minimal-barrier path rather than
the optimal path. An equivalent algorithm for gen-
erating the MST is the Kruskal’s algorithm:

(a) Create a forest F (a set of trees), where each
vertex in the graph is a separate tree.

(b) Create a set S containing all the edges in the
graph.

(¢) While S is nonempty: “Remove an edge with
minimum weight from S.” If that edge connects
two different trees, then add it to the forest,
combining two trees into a single tree.” Oth-
erwise discard that edge. Note that an edge
cannot connect a tree to itself, thus forbidding
loops to be formed.

Kruskal’s algorithm resembles the percolation pro-
cess because we add links to the forest according
to increasing order of weights. The forest is actu-
ally the set of percolation clusters growing as the
occupation probability is increasing. It was noted
by Dobrin et al. [Dobrin & Duxbury, 2001] that
the geometry of the MST depends only on the
unique ordering of the links of the network accord-
ing to their weights. It does not matter if the
weights are nearly the same or wildly different, it
is only their ordering that matters. Given a net-
work with weights on the links, any transforma-
tion which preserves the ordering of the weights
(e.g. the link which has the fiftieth largest energy
is the same before and after the transformation)
leaves the MST geometry unaltered. This prop-
erty is termed “universality” of the MST. Thus,
given a network with weights, represented by a ran-
dom variable distributed uniformly, a monotonic
transformation of the weights will leave the MST
unchanged.

Another equivalent algorithm to find the MST
is the “bombing optimization algorithm” [Braun-
stein et al., 2003]. Similar to the one explained in
Sec. 2.4, we start with the full network and remove
links in order of descending weights. If the removal
of a link disconnects the graph, we restore the link
[loselevich & Lyubshin, 2004]; otherwise the link
is removed. The algorithm ends and the MST is

obtained when no more links can be removed with-
out disconnecting the graph.

2.6. The incipient infinite
cluster (I1C)

To find the IIC of ER and SF in uncorrelated
weighted networks,® we start with the fully con-
nected network and remove links in descending
order of their weights. After each removal of a
link, we calculate the weighted average degree xk =
(k?)/(k), which decreases with link removals. When
K < 2, we stop the process [Cohen et al., 2000]. The
meaning of this criterion is explained in the next
section, where its connection with the percolation
threshold p. is established. The largest remaining
component is the IIC. For the two-dimensional (2D)
square lattice we cut the links (bonds) in descend-
ing order of their weights until we reach the percola-
tion threshold p. (= 0.5). At that point the largest
remaining component is the IIC [Bunde & Havlin,
1996].

3. Optimal Path in Strong Disorder
and Percolation on the Cayley Tree

In this section we review classical analytical meth-
ods for exploring random networks based on perco-
lation theory on a Cayley tree [Stauffer & Aharony,
1994; Bunde & Havlin, 1996], or branching pro-
cesses [Harris, 1989]. To obtain the optimal path
in the strong disorder limit, we present the fol-
lowing theoretical argument. It has been shown
[Braunstein et al., 2001; Cieplak et al., 1996] that
the optimal path in the SD limit between two nodes
A and B on the network can be obtained by the
bombing algorithm described in Sec. 2.4. This algo-
rithm is based on randomly removing links. Since
randomly removing links is a percolation process,
the optimal path must be on the percolation back-
bone connecting A and B. We can explore the net-
work starting with node A by Dijkstra’s algorithm,
sequentially creating burning shells of chemical dis-
tance n from the node A. Alternatively we can think
of the nth shell as of nth generation of descendants
of a parent A in a branching process. The random
network consisting of a large number of nodes N —
oo and small average degree (k) < N, has a tree-like
local structure with no loops, since the probability
that a node we randomly chose by an outgoing link

4By uncorrelated we mean that the weights are not correlated with the topology, such as the degree of nodes.
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has been already visited is less than (k)" /N, which
remains negligible for n < In N/In(k).

As we remove links by the bombing algorithm,
the average degree of remaining nodes decreases,
and the role of loops decreases. Thus finite loops
play no role in determining the properties of the
optimal path. In fact, connecting the nodes A and B
by an optimal path is equivalent to connecting each
of them to a very distant shell on a corresponding
Cayley tree. As the fraction ¢ = 1 — p of remaining
links decreases, we reach the percolation threshold
at which removal of a next link destroys the con-
nectivity with a very high probability. Note that if
we select weights of the links 7; = exp(ar;), where
r; is uniformly distributed on [0, 1], the fraction of
remaining bonds, p, is equal to r; of the next link,
we will remove.

3.1. D:astribution of the maximal
weight on the optimal path

In order to further develop this analogy, we will
show that the distribution of the maximal ran-
dom number 7. along the optimal path® can be
expressed in terms of the order parameter P, (p) in
the percolation problem on the Cayley tree, where
P, (p) is the probability that a randomly chosen
site on the Cayley tree has infinite number of gen-
erations of descendants or, in other words, belongs
to the infinite cluster.

If the original graph has a degree distribution
P(k), the probability that we reach a node with a
degree k by following a randomly chosen link on
the graph, is equal to kP(k)/(k), where (k) is the
average degree. This is because the probability of
reaching a given node by following a randomly cho-
sen link is proportional to the number of links, &, of
that node and (k) comes from normalization. Also,
if we arrive at a node with degree k, the total num-
ber of outgoing branches is k£ — 1. Therefore, from
the point of view of the Cayley tree, the probabil-
ity px—1 to arrive at a node with £ — 1 outgoing
branches by following a randomly chosen link is

kP(k)
Pk—1 B (5)

In the asymptotic limit, N — oo, when the opti-
mal path between the two nodes is very long, the
probability distribution for the maximal weight link

can be obtained from the following analysis. Let us
assume that the probability of not reaching nth gen-
eration starting from a randomly chosen link of the
Cayley tree whose links exist with a probability p,
is (. Suppose this link leads to a node whose out-
going degree is 2. Then the probability that starting
from this link, we will not reach n generations of its
descendants is the sum of three terms:

1. The probability that both outgoing links do not
exist is equal to (1 — p)2.

2. The probability that both outgoing links exist,
but they do not have n—1 generations of descen-
dants is equal to p?Q? .

3. The probability that only one of the two outgo-
ing links exist but it does not have n — 1 gener-

ations of descendants is equal to 2(1 — p)pQ,—1.

Therefore, in this case

Qn=(1-p)*+p*Q; 1 +2(1 — p)pQn-1, (6)

which on simplification becomes

Qn = ((1 _p) +an71)2~ (7)

Following this argument for the case when our link
leads to a node with m outgoing links, the proba-
bility that starting from this node, we cannot reach
n generations, is

Qn = ((1 _p) +an71)m' (8)

In the case of a Cayley tree with a variable degree,
we must incorporate a factor pi_;1 given by Eq. (5)
which accounts for the probability that the node
under consideration has k£ — 1 outgoing edges and
sum up over all possible values of k. Thus for a exist-
ing link on the Cayley tree, the probability that it
does not have descendants in generation n can be
obtained by applying a recursion relation

o0 _ k—1
k=1

for I =1,2,...,n with the initial condition Qg = 0,
which indicates that a given link is always present
in generation zero of its descendants.

For a random graph, a randomly chosen node
has k outgoing edges with the original prob-
ability P(k). Thus it has a slightly different

5The maximal random number, is the first random number in the bombing process that we cannot remove without breaking
the connection between a pair of nodes. In other words, it is the value that dominates the sum of the costs in the SD limit

(see [Braunstein et al., 2003, 2004]).
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probability @, (p) of not having descendants in its 1
h ion:
nth generation p=p,
- > L sl T P>p, e
Qn=>) Pk)((1—p)+pQu-1)"  (10) : e
k=0 i
It is convenient to introduce the generating 0.6 - !
function of the original degree distribution c e ;
s e
G(z) =) P(k)a" (11) 041 , L i
k=1 i
and the generating function of the degree distribu- 02
tion of the Cayley tree
= kP(k) ' P_(p)
= -1 0 ‘ ‘ ‘ :
Gla) =) WL (12) 0 02 04 06 08 1
k=1 f
where x is an arbitrary complex variable. Using "
the normalization conditions for the probabilities Fig. 2. The iterative process of solving Eq. (18). The thin

2o P(k) = 1, it is easy to see that G(1) = 1.
Taking into account that (k) = > ;2 kP(k) we
have (k) = dG /dz|,—1 = G'(1) and hence G(z) and
G(x) are connected by a relation

/
G(z) = Cf (:c)
G'(1)
For any degree distribution P(k) — 0, as k — oo
and thus both functions are analytic functions of
x and have a convergence radius R > 1. Since
P(k) > 0, these functions and all their derivatives
are monotonically increasing functions on an inter-
val [0,1). For the ER networks, the degree distri-
bution is Poisson given by: P(k) = (k)* exp~* /k!,
hence G(z) = G(z) = exp[(k)(z — 1)]. For scale
free distribution, P(k) ~ k=, hence G(z) is pro-
portional to Riemann (-function, () (x).
If we denote by f,(p), the probability that
starting at a randomly chosen existing link we can
reach, or survive up to, the nth generation, then

fn =1- Qn(p) (14)
and by fn(p), the probability that a randomly cho-
sen node has at least n generation of descendants,

(13)

fa=1-Qu(p) (15)

then
Jn=1=G(l —pfn-1) (16)

and
fo=1-G(1=pfa). (17)

The sequence of iterations (16) is visualized (see
Fig. 2) as a process of solving the equation

r=1-G(1 —px) (18)

straight line y = = represents the left-hand side. The bold
curve represents the right-hand side (r.h.s) for p = pe, at
which the r.h.s. is tangential to y = x at the origin. The
dashed curve represents r.h.s. for p > p.. Both cases are
computed for the Poisson degree distribution with (k) = 2,
so r.h.s of Eq. (18) is given by 1 — exp(—2px). The arrows
represent iterations starting from fy = 1 (the starting link
belongs to generation 0). It is clear that the convergence of
the iterations is very fast (exponential) for p # pc, while it is
very slow (power law) for p = pe.

by an iteration method. Obviously, this equation
has at least one root xg = 1. But if the deriva-
tive of the right-hand side, [1 — G(1 — pz)]'|z=0 =
pG’(1) > 1, we will have another root 0 < x; < 1.
This root has a physical meaning of a probability
P, (p) that a randomly selected existing link is con-
nected to infinity (see also [Cohen et al., 2000]).
For p > 1/G'(1), the iterations will converge to this
root, while for p < 1/G’(1), the iterations will con-
verge to Py (p) = 0. Thus

I N U N
FTEm T -k e

(19)

has a meaning of the percolation threshold above
which there is a finite probability to reach the infin-
ity. Using this equation we can derive the condition
Kk < 2 to stop bombing in the process of obtain-
ing IIC. Indeed k < 2 indicates that Eq. (18) has
only one trivial solution xg = 0 even for p = 1.
This means that all the clusters in this network are
finite. If Kk > 2, p. < 1 accordingly Py (1) > 0, i.e.
the infinite cluster does exist. The condition kK = 2
corresponds to p. = 1 which means that any fur-
ther link removal will produce a network in which
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P, (1) = 0, i.e. the network with only finite clusters,
while at p = 1, the infinite cluster is incipient.

The probability that a randomly chosen node
is connected to infinity can be determined as

Poo(p) =1 = G(1 = pPuc(p)), (20)
where P, (p) is a nontrivial solution of Eq. (18). For
some degree distributions including Poisson distri-
bution, P, (1) < 1. This indicates that a randomly
chosen node on the original network may not belong
to the giant component of the network. In fact, the
optimal path between nodes A and B exists if both
belong to the giant component. Provided that A and
B both belong to the giant component, the proba-
bility that they are still connected when the fraction
1 — p of bonds is removed is

~ 2
(p) = (ﬁ”ﬁfi) | (21)

Translating this condition to the bombing algorithm
of generating an optimal path, II(p) is the proba-
bility that the maximum random number along the
optimal path rpa. < p. Indeed, II(p) is the proba-
bility that when only a fraction p of links remains,
the connectivity between A and B still exists. Hence
Tmax < p. Thus, II(rmax) is the cumulative distribu-
tion of rmax. The probability density of 7.y is thus
equal to the derivative of II(p) with respect to p:

d
Sup)| (22)
In Fig. 3 we plot two curves. The curve with
symbols is the probability distribution of ryax in a
strongly disordered ER graph with (k) = 4 obtained
by simulations. The line shows the same probability
distribution obtained using [Eq. (22)] for a Poisson
degree distribution with (k) = 4. The curves coin-
cide very well, indicating the excellent agreement
between the theoretical analysis and simulations.

P(rmax) =

3.2. Dastribution of the cluster
chemical length at percolation
threshold

Figure 2 illustrates the convergence of the probabil-
ity of the random link to have descendants in the
nth generations. The difference P(n) = f, — foi1
is the probability that the last generation of the
descendants of this link is n. In percolation lan-
guage, it is the probability distribution of the clus-
ter chemical length ¢ = n. In order to find, how
fn — 0 when p = p., we can expand Eq. (16) in

Fig. 3. The probability distribution of the maximal random
number rmax along the optimal path obtained using simula-
tions on a random graph with (k) = 4 and using the analyti-
cal method on a Cayley tree with Poisson degree distribution
and (k) = 4. The simulations involve 100000 network realiza-
tions and are carried out on a network of 65536 nodes. The
values of lopt for this network lie in the range 40 < lopy < 120
(after [Braunstein et al., 2004]).

Taylor series at f, = 0. For ER networks, G(x) has
all the derivatives at x = 1, thus (16) can be pre-
sented as

fo = G (D fur = g0 G (D F2y +O(F2y). (23)

For SF graphs with A > 4, G”(1) also exists, thus
the above equation holds. For 3 < A < 4 the second
derivative does not exist, however using the Taube-
rian theorem which relates the speed of the decay of
the coefficients P(k) ~ k= of the power series and
the behavior of its singularity at the convergence
radius: Gs(r) ~ (1 — z)*~! we can write:

fo =G W) fuor —cfa 2 +O0(£71),  (24)

where ¢ is some positive coefficient.

As A\ — 3, G'(1) — oo and hence, accord-
ing to Eq. (19) p. — 0. This means that for SF
networks with A < 3, percolation approach breaks
down. However, for finite networks, it is unlikely to
have a degree larger than N*/(A~1_ This fact is obvi-
ous since when one generates random degrees with
probability distribution P(k), one produces ran-
dom numbers x uniformly distributed on a interval
between 0 and 1, and compute k = f(x), where f(z)
satisfies the equation @ = 377,y P(k) ~ fx)=A L
Thus the largest k corresponds to the smallest x.
Generating N random numbers is equivalent to
throwing N points on an interval [0, 1] which divide
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this interval into N 4 1 segments whose lengths are
identically distributed with an exponential distri-
bution. Thus the average value of the smallest z is
equal to 1/(N + 1). Accordingly, the average value
of the largest k can be approximated as kpax =
f(1/(N +1)) ~ NY/O=1 [Cohen et al., 2000]. Thus
replacing summation by integration up to kpyax in
the expression for G'(1) ~ fk"“”‘ E=A2dk ~ k3o =
NG-V/A=1D_ Hence for 2 < X\ < 3 [Cohen et al.,
2000].

pe ~ NA=3)/G=1) (25)

When p < pe, fn ~ (p/pe)", i.e. the conver-
gence is exponential. When p = p., we will seek the
solution of the above recursion relations in a power
law form: f, ~ n~?. Expanding them in powers
of n~!, and equating the leading powers, we have
0+ 1=0(\—2), from which we obtain

fn ~ ??,_1/()\_3), (26)
or
P)=fo— foza~ 0T, (27)
where [Cohen et al., 2002; Cohen et al., 2002]
2,0 >4 ER
" 5%5+L3<A§4 ' (28)

The probability that a randomly selected node has
exactly ¢ generations of descendants is equal to

P() = fo = feyr = G = pfy) = G(1 = pfra)
~ (k)p(fe — fe-1)- (29)

Thus it is characterized by the same 7, as P(¢).
Taylor expansions (23) and (24) can be used
to derive the behavior of Py (p) as p — p. by let-

ting f, = fn—1 = Px(p) and solving the resulting
equations with a leading term accuracy:

Poo(p) = (p - pc)ﬁv (30)
where [Cohen et al., 2000]
1LA> 4 ER
= 31
b {A—&3<A§4 (31)

3.3. Da:istribution of the cluster
sizes at percolation threshold
Using the generating functions [Cohen et al., 2002;

Cohen et al., 2002; Callaway et al., 2000], one can
also find the distribution of the clusters sizes, P(s),

connected to a randomly selected link. For simplic-
ity, let us again consider a link (conducting with
probability p) leading to a node of a degree k = 3,
so it has only two outgoing links. The probability
that this link is connected to a cluster consisting of
s nodes obeys the following relations

P(s)=p Y  P(k)P() (32)

k+l=s—1

for s > 0 and P(0) = 1—p. Introducing the generat-
ing function of the cluster size distribution H(z) =
>0 P(s)z®, we have: H(z) =1 —p+ axpH?*(x). In
a general Cayley tree with an arbitrary degree dis-
tribution we have:

H(zx) =1—p+ xpG(H(x)). (33)

This equation defines the behavior of H(z) for x —
1, and thus via the Tauberian theorem defines the
asymptotic behavior of its coefficients P(s). Note
that H(1) is the cumulative probability of all finite
clusters. Thus (1 — H(1)) = pPxo(p) is the probabil-
ity that a randomly selected link conducting with
probability p is connected to infinity and Eq. (33)
becomes equivalent to Eq. (18) for Py (p).

Introducing 6, = 1 — z and gy = 1 — H(x)
and expanding G(z) around x = 1 at percola-
tion threshold p = 1/G'(1), we have 050, + pd, =
cxdy 2 +0(67%) which yields 67 ~ 5a/ 2, Using
the Tauberian theorem we conclude [Cohen et al.,
2002; Cohen et al., 2002]:

P(s) ~ s, (34)
where
g, A>4 ER
Ts = . . (35)
— 41 <4
A_2+,3<A,

Analogous considerations suggest that the probabil-
ities P(s) that a randomly selected node belongs to
the cluster of size s produce the generating function
H(x) = G(H(z)). Since for A > 3, G"(1) < oo, the
singularity of H(z) for  — 1 is of the same order
as the singularity of H(x) and thus its coefficients,
P(s), also decay as s~ 7.

Following [Stauffer & Aharony, 1994], we will
show that the distribution of all the disconnected
clusters in a network scales as Pyy(s) = P(s)/s ~
s+l Indeed, let us select a random node in
this network. The number of nodes belonging to
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the clusters of size s is NsP(s)/ > 7" sPa(s) =
NsPy(s)/(s). Thus, P(s) = sP.(s)/(s).

If we have a network of N nodes, the size of
the largest cluster S is determined by the relation
> o2 g Pa(s) ~ 1/N, which becomes clear if we
describe a concrete realization of the cluster sizes
by throwing N/(s) random points representing clus-
ters under the curve Py (s). The average area corre-
sponding to each of these points is 1/N and the area
corresponding to the rightmost point representing
the largest cluster is Y .o ¢ Payi(s) ~ S~7. Thus the
largest cluster (which coincides with IIC) in the net-
work of N nodes scales as

S~ NV (36)

For ER graphs, the relation S ~ N2/3 has been
derived in a classical work [Erdds & Rényi, 1959].

4. Scaling of the Length of the
Optimal Path in Strong Disorder

The relations obtained in the previous subsections
allow us to determine the scaling of the average opti-
mal path length in a network of N nodes. During
bombing, when we reach percolation threshold, we
have targeted only a tiny fraction of links (or nodes)
on the optimal path, with ry.x > p. which we have
to restore, because their removal would destroy the
connectivity. The majority of the links on the opti-
mal path remains intact. All of them belong to the
remaining percolation clusters which at percolation
threshold has a tree-like structure with no loops.
At this point, the optimal path coincides with the
shortest path, which is uniquely determined. We
will describe this situation in detail in Sec. 6. With
high probability, the optimal path between any two
nodes A and B goes through the largest cluster
at the percolation threshold. Thus its length must
scale as the chemical length of the largest perco-
lation cluster [Braunstein et al., 2003]. Assuming
a power law relation between the cluster size s and
its chemical dimension ¢, s = ¢4, and using the fact
that both of the quantities have power law distribu-
tions P(¢)dl = P(s)ds, we have (7t = g~derstde=1,
Thus [Barrat et al., 2004]

d =12 (37)

Te— 1

Therefore, S ~ égf)t and using (36) we have fop ~
S/de  Nvort where
1

S 38
dyTs (38)

Vopt =

Using Egs. (35) and (28) for 75 and 74 respectively,
we have

1
SA> 4, ER

e >\_33</\<4 o
)\_17 g

Note that A = 4 corresponds to the special case
when G”(1) diverges, in this case the Tauberian the-
orem predicts logarithmic corrections, and hence we
expect Lopy ~ N'/3/In N for \ = 4.

We review above the exact results for the Cay-
ley tree, from which using heuristic arguments we
have derived the scaling relation between the aver-
age length of the optimal path and the number
of nodes in the network. Now we will show how
the same predictions can be obtained using general
percolation theory. We will also present numerical
data supporting our heuristic arguments. We begin
by considering the ER graph. At criticality, it is
equivalent to percolation on the Cayley tree or per-
colation at the upper critical dimension d. = 6. For
the ER graph, we derived above that the mass of
the IIC, S, scales as N2/3 [Erdés & Rényi, 1959].
This result can also be obtained in the framework
of percolation theory for d. = 6. Since S ~ R% and
N ~ R¢ (where dy is the fractal dimension and R
the spatial diameter of the cluster), it follows that
S ~ N4/ and for d, = 6, dy = 4 [Bunde & Havlin,
1996] we obtain S ~ N2/3 [Watts, 2003).

It is also known [Bunde & Havlin, 1996] that,
at criticality, at the upper critical dimension, the
average shortest path length £, ~ R?, like a
random walk and therefore S ~ ¢% with d; = 2.
Thus

1/d 2/3d o
Conin ~ Lopt ~ S/~ N?/3E s Nert,

where vopt = 2/3dy = 1/3.

For SF networks, we can also use the percola-
tion results at criticality. It was found [Cohen et al.,
2002; Cohen et al., 2002] (see Sec. 3) that dy = 2 for
A>4,dj=(A-2)/(A=3) for3 <\ <4, S~ N3
for A > 4, and S ~ NA2/O=1) for 3 < X < 4.
Hence, we conclude that

N1/3
NO=3)/0-1)

(40)

A>4
Emin“‘gopt’\“ 3<A<4'

Thus vepe = 1/3 for ER and SF with A > 4, and
Vopt = (A—3)/(A —1) for SF with 3 < A < 4. Since
for SF networks with A > 4 the scaling behavior of
Lopt 1s the same as for ER graphs and for A < 4 the

(41)
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scaling is different, we can regard SF networks as a
generalization of ER graphs.

Next, we describe the details of the numer-
ical simulations and show that the results agree
with the above theoretical predictions. We perform
numerical simulations in the strong disorder limit
by the method described in Sec. 2.4 for ER and SF
networks. We also perform additional simulations
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Fig. 4.

for the case of strong disorder on ER networks
using the ultrametric optimization algorithm (see
Sec. 2.3) and find results identical to the results
obtained by randomly removing links. In Fig. 4(a)
we show a double logarithmic plot of /¢ as a func-
tion of N for ER graphs. To evaluate the asymp-
totic value for vop; we use successive slopes for
both approaches, defined as the successive slopes
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(a) Plot of £opt as a function of N in double logarithmic scale for the optimal path length in strong disorder using the

two numerical methods discussed in the text: (i) results obtained using the “bombing” approach (O) and (ii) results obtained

using the ultrametric approach (x). The dashed line shows the slope 1/3. (b) Successive slopes vopt(N) as a function of 1/N1/3
for the optimal path length in strong disorder using the two methods described in the text. The symbols denote the same as in
(a). The dashed line is the quadratic fitting of the results showing that the extrapolated value of the effective exponent in the
limit N — oo approaches 1/3. This result coincides with our theoretical value vopy = 1/3 asymptotically (after [Braunstein

et al., 2003; Havlin et al., 2005]).
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Fig. 5. Results of numerical simulations. (a) The dependence of £opt on N3 for A > 4. (b) The dependence of £opt/InN on
N3 for X = 4. (c) The dependence of £op on NO=3/O-1) g5 3 < A < 4. (d) The dependence of £opt on In N for A < 3

(after [Braunstein et al., 2003; Havlin et al., 2005]).
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Fig. 5.

[Braunstein et al., 2001] of the values in Fig. 4. One
can see from Fig. 4(b) that their value approaches
1/3 when N > 1, supporting Eq. (40).

The theoretical considerations [Egs. (40) and
(41)] predict that SF graphs with A > 4, are sim-
ilar to ER with fope ~ N'/3, while for SF graphs
with 3 < A < 4, Lopy ~ NO3/O=D Figure 5(a)
shows data from numerical simulations supporting
the linear behavior of fo,; versus N 13 for X\ > 4.
The quality of the linear fit becomes poor for A — 4.
At this value, there are corrections probably due
to logarithmic divergence of the second moment of
the degree distribution, i.e. fop ~ N 1/3/In N [see
Fig. 5(b)]. Figure 5(c) shows results of simulations
supporting the asymptotic linear behavior of fqp
versus NA=3)/A=1) for 3 < X\ < 4. Theoretically,
as A — 3, Vopt = (A —3)/(A —1) — 0, and thus
one can expect for A = 3 a logarithmic N depen-
dence of £ypt. Indeed, for 2 < A < 3 our numerical
results for the strong disorder limit suggest that £,
scales slower than a power law with N but slightly
faster than In N. The numerical results can be fit to
lopt ~ (In N)*~1 [see Fig. 5(d)]. Note that the cor-
rect asymptotic behavior may be different and this
result may represent only a crossover regime. The
exact nature of the percolation cluster at A < 3
is not clear yet, since in this regime the transition
does not occur at a finite (nonzero) critical thresh-
old [Cohen et al., 2000]. We obtain similar results
for SF networks where the weights are associated
with nodes instead of links.

30 T T T T

lopt

. . |
0 50 100

(Continued )

5. Scaling of the Length of the
Optimal Path in Weak Disorder

When a = 1/kT — 0, all the 7; essentially con-
tribute to the total cost. Thus 7" — oo (very high
temperatures) corresponds to weak disorder limit.
We expect that the optimal path length in the weak
disorder case will not be considerably different from
the shortest path, as found also for regular lattices
[Smailer et al., 1993] and random graphs [van der
Hofstad et al., 2001]. Thus we expect that the scal-
ing for the shortest path will also be valid for the
optimal path in weak disorder, but with a different
prefactor depending on the details of the graph and
on the type of disorder. We simulate weak disorder
by selecting 0 < 7; < 1 from a uniform distribution.
To compute lopt, we use the Dijkstra algorithm (see
Sec. 2.2) [Cormen et al., 1990]. The scaling of the
length of the optimal path in WD for ER, is shown
in Fig. 6(a). Here we plot ot as a function of In N
for (k) = 4. The weak disorder does not change the
scaling behavior of /,p; on ER compared to fpin,
only the prefactor.

For SF networks, the behavior of the opti-
mal path in the weak disorder limit is shown in
Fig. 6(b) for different degree distribution exponents
A. Here we plot /o as a function of In V. All the
curves seem to have linear asymptotes. This result
is analogous to the behavior of the shortest path
lnin ~ In N for 3 < A < 4 and ER. Note, however,
that for 2 < A\ < 3, £y scale as Inln N [Cohen &
Havlin, 2003]. Thus, £op is significantly larger and
scales as In V [Fig. 3(b)]. Thus, weak disorder does
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Results of numerical simulations. (a) The linear dependence of £opt on In N for ER graphs in the weak disorder case

for (k) = 4. The dashed line is used as a guide to show the linear dependence. (b) The dependence of ¢opt on In N for SF
graphs in the weak disorder case for various values of A. The different curves represent different values of A from 2.5 (bottom)
to 5 (top) (after [Sreenivasan et al., 2004; Sreenivasan et al., 2005]).

not change the universality class of the length of
the optimal path except in the case of “ultra-small”
worlds 2 < X < 3, where lop; ~ exp(fmin), and the
networks become small worlds.

6. Crossover from Weak to Strong
Disorder

6.1. FExponential disorder

Consider the case of finite a (7" > 0). In this case
we expect a crossover in the length of the optimal
path (or the system size N) from strong disorder
behavior to weak disorder depending on the value
of a. In order to study this crossover we have to use
an implementation of disorder that can be tuned to
realize narrow distributions of link weights (WD) as
well as broad distributions of link weights (SD). The
procedure that we adopt to implement the disorder
is as follows [Cieplak et al., 1996; Porto et al., 1999;
Braunstein et al., 2001; Braunstein et al., 2003] (see
Sec. 4.1). Assign to each link i of the network a
random number r;, uniformly distributed between 0
and 1. For the analogy with the thermally activated
process described in Sec. 4 the r; play the role of the
energy barriers. The transit time or cost associated
with link ¢ is then 7, = exp(ar;), where a controls
the strength of disorder i.e. the broadness of the
distribution of link weights. The limit a — oo is the
strong disorder limit, where a single link dominates
the cost of the path. For d-dimensional lattices of
size L, the crossover is found [Cieplak et al., 1996;

Porto et al., 1999] to behave as

Ldopt ,
Eopt ~ L,

where v is the percolation correlation exponent
[Strelniker et al., 2004; Wu et al., 2005]. For d = 2,
dopt ~ 1.22 and for d = 3, dopy ~ 1.44 [Cieplak
et al., 1996; Porto et al., 1999]. Here we show
[Sreenivasan et al., 2004] that for any network of
size N and any finite a, there exists a crossover net-
work size N*(a) such that for N < N*(a) the scal-
ing properties of the optimal path are in the strong
disorder regime, while for N > N*(a) the typical
optimal paths are in the weak disorder regime. We
evaluate below the function N*(a).

In general, the average optimal path length
lopt(a) in a weighted network depends on a as well
as on N. In the following, we use instead of N the
min-max path length /o, which is related to N as
log = lopt(00) ~ NPt [Egs. (40) and (41)] and
hence N can be expressed in terms of £,

N ~ (43)

Thus, for finite a, fopt(a) depends on both a and
l. We expect a crossover length ¢*(a), which cor-
responds to the crossover network size N*(a), such
that (i) for o < £*(a), the scaling properties of
lopt(a) are of the strong disorder regime, and (ii)
for £oc > £*(a), the scaling properties of op(a) are
of the weak disorder regime. In Fig. 7, we show a
schematic representation of the changes of the opti-
mal path as the network size increases.

L < a”;

42
L>a”. (42)

(il
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N < N*(a)
Strong Disorder

N =N*(a)

N > N*(a)
Weak Disorder

Fig. 7. Schematic representation of the transition in the
topology of the optimal path with system size N for a given
disorder strength a. The solid line shows the optimal path
at a finite value of a connecting two nodes indicated by the
filled circles. The portion of the min-max path that is dis-
tinct from the optimal path is indicated by the dashed line.
(a) For N <« N*(a) (i.e. oo < £*(a)), the optimal path coin-
cides with the min-max path, and we expect the statistics of
the SD limit. (b) For N = N*(a) (i.e. foc = £*(a)), the opti-
mal path starts deviating from the min-max path. (c) For
N > N*(a) (i.e. £eo > €*(a)), the optimal path has almost
no links in common with the min-max path, and we expect
the statistics of the WD limit (after [Sreenivasan et al., 2004;
Sreenivasan et al., 2005]).

In order to study the transition from strong to
weak disorder, we introduce a measure which indi-
cates how close or far the disordered network is from
the limit of strong disorder. A natural measure is
the ratio

Lopt (a)
loo

W(a) = (44)

Using the scaling relationships between fqp(a) and
N in both regimes, and f,, ~ N"°rt we get

(@) ~ {eoo ~ Nveee[SD] (45)
Inls ~InN [WD]
From Egs. (44) and (45) it follows,
const  [SD]
W(a) ~ hjq f:o — (46)

We propose the following scaling Ansatz for
W (a),

W(a) =F (;zz)) , (47)

where
const u<k1
F(u) ~ < In(u) (48)
u>1,
u

with
l
*(a)’

We now develop analytic arguments [Sreeni-
vasan et al., 2004] to obtain the dependence of the
crossover length £* on the disorder strength a. These
arguments will also give a clearer picture about the
nature of the transition of the optimal path with
disorder strength.

We begin by making few observations about the
min-max path. In Fig. 8, we plot the average value
of the random numbers 7, on the min-max path as
a function of their rank n (1 < n < /) for ER
networks with (k) = 4 and for SF networks with
A = 3.5. This can be done for a min-max path of any
length but in order to get good statistics we use the
most probable min-max path length. We call links
with » < p. “black” links, and links with r > p.
“gray” links, following the terminology of losele-
vich and Lyubshin [2004] where p, is the percolation
threshold of the network [Cohen et al., 2000].

We make the following observations regarding
the min-max path:

u (49)

(i) For r, < p¢, the values of r,, decrease linearly
with rank n, implying that the values of r for
black links are uniformly distributed between
0 and p,, consistent with the results of [Szabé
et al., 2003]. This is shown in Fig. 8.

(ii) The average number of black links, (¢), along
the min-max path increases linearly with the
average path length f,,. This is shown in
Fig. 9(a).

(iii) The average number of gray links (¢,) along the
min-max path increases logarithmically with
the average path length /., or, equivalently,
with the network size N. This is shown in
Fig. 9(b).

The simulation results presented in Fig. 9 are for
ER networks; however, we have confirmed that the
observations (ii) and (iii) are also valid for SF net-
works with A > 3 [Sreenivasan et al., 2004; Kalisky
et al., 2006].

Next we discuss our observations using the con-
cept of the MST. The path on the MST between any
two nodes A and B, is the optimal path between the
nodes in the strong disorder limit — i.e. the min-
max path.

In order to construct the MST we use the bomb-
ing algorithm (see Sec. 2.4). At the point that one
cannot remove more links without disconnecting the
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(a) The average number of links (¢;) with random number values r < p¢ on the min-max path plotted as a function of

its length /o for an ER network, showing that (¢;) grows linearly with £oc. (b) The average number of links (¢4) with random
number values r > pe on the min-max path versus In N for an ER network, showing that (¢4) ~ In N. The inset shows the
successive slopes, indicating that in the asymptotic limit (¢4) ~ 1.55In N (after [Sreenivasan et al., 2004; Sreenivasan et al.,

2005)).

graph, the number of remaining black links is

Ny, = kP, (50)

where (k) is the average degree of the original graph
and p, is given by [Cohen et al., 2000]

(51)

The black links give rise to N, disconnected
clusters. One of these is a spanning cluster, called
the giant component or 11C (see Sec. 2.6). The N,
clusters are linked together into a connected tree by
exactly N, — 1 gray links (see Fig. 10). Each of the
N, clusters is itself a tree, since a random graph can
be regarded as an infinite dimensional system, and
at the percolation threshold in an infinite dimen-
sional system the clusters can be regarded as trees.
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Fig. 10. Schematic representation of the structure of the
minimal spanning tree, at the percolation threshold, with G
being the giant component. Inside each cluster, the nodes are
connected by black links to form a tree. The dotted lines rep-
resent the gray links which connect the finite clusters to form
the gray tree. In this example N. = 4 and the number of
gray links equals N — 1 = 3 (after [Sreenivasan et al., 2004;
Sreenivasan et al., 2005]).

Thus the N, clusters containing N, black links,
together with N. — 1 gray links form a spanning
tree consisting of Ny + N, — 1 links.

Thus the MST provides all min-max path
between any two sites on the graph. Since the MST
connects all N nodes, the number of links on this
tree must be N — 1, so

Ny + N. = N. (52)
From Egs. (50) and (52) it follows that

N.=N <1 - <k>pc> . (53)

2

Therefore N, is proportional to V.

A path between two nodes on the MST consists
of 4, black links. Since the black links are the links
that remain after removing all links with r > p., the
random number values r on the black links are uni-
formly distributed between 0 and p. in agreement
with observation (i) and [Szabé et al., 2003].

Since there are N, clusters which include clus-
ters of nodes connected by black links as well as
isolated nodes, the MST can be described as an
effective tree of N, “super” nodes, each representing
a cluster, and N, — 1 gray links. We call this tree
the “gray tree” (see Fig. 10). This tree is in fact

This is a consequence of the fact that for the original network the clusters at percolation have sizes s distributed as P(s)~ s~

a scale free tree® [Kalisky et al., 2006] with degree
exponent A\, = 2.5 for ER networks and scale for
networks with A > 4, and A\, = (2A —3)/(A —2) for
SF networks with 3 < A < 4. If we take two nodes A
and B on the original network, they will most likely
lie on two distinct effective nodes of the gray tree.
The number of gray links encountered on the min-
max path connecting these two nodes will therefore
equal the number of links separating the effective
nodes on the gray tree. Hence, the average number
of gray links (¢,) encountered on the min-max path
between an arbitrary pair of nodes on the network
is simply the average diameter of the gray tree. Our
simulation results [see Fig. 9(b)] indicate that

() ~In N. (54)

Since ({y) ~ Inls < ls, the average number
of black links (#;) on the min-max path scales as £+,
in the limit of large /, in agreement with observa-
tion (2) as shown in Fig. 9(a).

Next, we discuss the implications of our find-
ings for the crossover from strong to weak disorder.
From observations (i) and (ii), it follows that for the
portion of the path belonging to the giant compo-
nent, the distribution of random values r is uniform.
Hence we can approximate the sum of weights by
[Kalisky et al., 2005],

b b, [Pe
Zexp(ark) R~ —/ exp ardr
el Pc Jo

Ly
2 — 1
. (exp(ape) — 1)

= exp(ar”), (55)

where r* = p.+ (1/a) In((£) /ap.). Since () = loo,

1 loo
r*zpc—k—ln( ) (56)
a ape

Thus restoring a short-cut link between two nodes
on the optimal path with p. < r < r* may drasti-
cally reduce the length of the optimal path. When
ape > lso, 7 < pe and such a link does not exist,
if {0 > apc, the probability that such a link exists
becomes positive. Hence when the min-max path is
of length ¢, ~ ap., the optimal path starts devi-
ating from the min-max path. The length of the

T

[Cohen et al., 2002], (with 7 = 2.5 for ER networks and for SF networks with A > 4, and 7 = (2X\ — 3) /(A — 2) for SF networks
with 3 < A < 4) and each node within this cluster has a nonzero probability of connecting to a node outside the cluster.
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min-max path at which the deviation first occurs
is precisely the crossover length ¢*(a), and there-
fore ¢*(a) ~ ap.. In the case of a network with
an arbitrary degree distribution, we can write using
Ea. (51), £(a) ~ a((k)/ (K2 — ).

Note that in the case of SF networks, as A\ —
37, pe approaches zero and consequently ¢*(a) — 0.
This suggests that for any finite value of disorder
strength a, a SF network with A < 3 is in the weak
disorder regime. We perform numerical simulations
and show that the results agree with our theoret-
ical predictions. For the details of our simulation
methods, see Sec. 2.

From our theoretical arguments, £*(a) ~ a and
therefore, from Eq. (47), W (a) must be a function
of {s/a. In Fig. 11 we show the ratio W (a) for dif-
ferent values of a plotted against o, /0*(a) = oo /a
for ER networks with (k) = 4, and for SF networks
with A = 3.5. The excellent data collapse is consis-
tent with the scaling relations Eq. (47). Figure 12
shows the scaled quantities W (a)u = Copt(a)/l*(a)
versus Inu = In(lo /0*(a)) = In(¢ /a), for both ER
networks with (k) = 4 and for SF networks with A =
3.5. The curves are linear at large u = (o /0*(a),
supporting the validity of the logarithmic term in
Eq. (48) for large u.

To summarize, for both ER random networks
and SF networks we obtain a scaling function for
the crossover from weak disorder characteristics to

strong disorder characteristics. We show that the
crossover occurs when the min-max path reaches
a crossover length ¢*(a) and ¢*(a) ~ a. Equiva-
lently, the crossover occurs when the network size
N reaches a crossover size N*(a), where N*(a) ~ a*
for ER networks and for SF networks with A > 4
and N*(a) ~ aP1D/A=3) for SF networks with
3<A<A4

6.2. General disorder: Criterion
for SD, WD crossovers

Until now we considered a specific form of P(1) =
P(r,a) = 1/(a7) with 1 < 7 < e® The question
is what happens for other distributions of weights
and what is the general criterion to determine which
form of P(7) can lead to strong disorder, and what
is the general condition for strong or weak disor-
der crossover. We present analytical results [Chen
et al., 2006] for such a criterion which are supported
by extensive simulations. Using this criterion we
show that certain power law distributions and log-
normal distributions, P(7,a), where a is a parame-
ter determining the broadness of the distribution,
can lead to strong disorder and a weak-strong
disorder crossover [Porto et al., 1999; Braunstein
et al., 2003; Sreenivasan et al., 2004]. We also show
that for P(7,a) uniform, Poisson or Gaussian, only
weak disorder occurs regardless of the broadness
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of P(7,a). Importantly, we find that for all P(r,a)
that possess a strong-weak disorder crossover, the
distributions of the optimal path lengths display the
same universal behavior.

If we express 7 in terms of a random variable r
uniformly distributed in [0, 1], we can use the same
gray and black link formalism as in the previous
section. This can be achieved by defining r(7) as a
relation:

r(r) = /OT P(7' a)dr'. (57)

Solving this equation with respect to 7 gives us
7(r,a) = f(r,a), where f(r,a) satisfies the relation

f(r,a)
. / P( a)dr. (58)
0

For a strong disorder regime, the sum of the weights
of the black links on the IIC must be smaller
than the smallest weight of the removed link 7. =

f(pe,a):

ly Cy
Zn = Zf(ri,a) < Te, (59)
i=1 =1

where r; are independent random variables uni-
formly distributed on [0,p.]. As we have shown
above, {;, = f so in the following we will replace
l, by the average path length in the strong disorder
limit, fo. The transition to weak disorder begins
when the probability that this sum is greater than

7. becomes substantial. The investigation of this
condition belongs to the realm of pure mathematics
and can be answered explicitly for any functional
form f(r,a). This condition is satisfied when the
mathematical expectation of the sum is greater
than 7.

Oy [P

= flrya)dr > 7. (60)
be Jo

Thus the crossover to weak disorder happens if
f(pca a)pc _ TePe

loo > A= —550 =
f(rya)dr / TP(7,a)dT
0

0

where A plays the role of the disorder strength and
7. satisfies the equation p. = [ P(7,a)dr. In order
for the strong disorder to exist for any network size
N, the disorder strength must diverge together with
the parameter a of the weight distribution a — oco.
In order to determine if a network exhibits a strong
disorder behavior it is useful to introduce a scaling
variable

L
77 (62)
so that if Z > 1 the network is in the weak disorder
regime and if Z < 1, the network is in the strong
disorder regime.

Note that if f’/f > Ag on the entire inter-
val [0,1], then A > Agp.. Thus, another sufficient

A
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condition for a strong disorder to exist is

/
i > gﬁ (63)
[ ope
For the exponential disorder function 7 = exp(ar),
we have f’/f = a and thus Eq. (63) coincides with
the condition of strong disorder ap. > f~ derived
in the previous section.

In the following, we will show how the above
condition is related to the strong to weak crossover
condition for the optimal path on lattices [Cieplak
et al., 1996; Porto et al., 1999; Buldyrev et al.,
2006]. For the optimal path in the strong disorder
limit connecting the opposite sides of the lattice of
linear size L, the largest random number 71 follows a
distribution characterized by a width which scales
as L™/, where v is the percolation connectivity
length exponent [Stauffer & Aharony, 1994; Bunde
& Havlin, 1996; Coniglio, 1982; Kalisky & Cohen,
2006]. The transition to weak disorder starts when
the optimal path may prefer to go through a slightly
larger value rg, taken from the same distribution
and thus ro — 71 ~ pCLfl/”. The condition for this
to happen is [f(re2) — f(r1)]/f(r1) < 1, which is
equivalent to

/ 1/v
F.rr
I pe

Now we will show that this condition is equivalent to
(63). Percolation on Erdés-Rényi (ER) networks is
equivalent to percolation on a lattice at the upper
critical dimension d. = 6 [Bunde & Havlin, 1996;
Cohen et al., 2002]. For d = 6, L ~ NY/% and v =
1/2. Thus indeed L'/ ~ NV/(e¥) ~ ¢_ [Braunstein
et al., 2003].

Following similar arguments for a scale-free net-
work with degree distribution P(k) ~ k= and
3 < X\ < 4, we can replace L™/" by N~(A=3)/(A-1)
since d. = 2(A — 1)/(A — 3) [Cohen et al., 2002].
Thus, due to Eq. (38) LY* ~ £, and we can intro-
duce the analogous scaling parameter Z for lattices:

(64)

Ll/y
f

Next we calculate A for several specific weight
distributions P(7) [Chen et al., 2006]. We begin
with the well-studied exponential disorder function
f(x) = e where r is a random number between 0
and 1 [Strelniker et al., 2004; Cieplak et al., 1996].
From Eq. (58) follows that P(7,a) = 1/(at), where

Z (65)

€ [1,e%]. Using Eq. (61) we have

aPcTe

A= ™ ape; (66)

Te —
For fixed A, but different ¢ and p., we expect to
obtain the same optimal path behavior. Indeed, this
has been shown to be valid [Wu et al., 2005; Strel-
niker et al., 2004; Kalisky et al., 2005; Chen et al.,
2006].

Next we study A for the disorder function
f(r,a) = r*, with r between 0 and 1 where a > 0
[Hansen & Kertész, 2004]. For this case, the disor-
der distribution is a power law P(7,a) = a7/,
Following Eq. (61) we obtain

A=a+1~a. (67)

Note that here a plays a similar role as a in Eq. (66),
but now A is independent of p., which means that
networks with different p., such as ER networks
with different average degree (k) = 1/p., yield the
same optimal path behavior.

For the power law distribution with negative
exponent f(r) = (1 —r)~* (a > 0), we have
P(r,a) = a 77171/ and

A= o= Dpel=p)™  ape (68)
(1_pc)1 *—1 1 —pe
We further generalize the power law distribu-
tion with the disorder function f(r,a) = r® by intro-
ducing the parameter 0 < A < 1 which is defined as
the lower bound of the uniformly distributed ran-
dom number r, iie. 1 = A < r < 1 [Hansen &
Kertész, 2004]. Under this condition, the distribu-
tion becomes

,7_1/(171
 JalA
Again using Eq. (61), we obtain

P(7,a) Te[(1—-A)1] (69)

ap:A

A_pCA—i-l—A' (70)
Table 1 shows the results of similar analysis
for the lognormal, Gaussian, uniform and exponen-
tial distributions P(7,a). From Table 1, we see that
for exponential function, power law and lognormal
distributions, A is proportional to a and can thus
become large. However for uniform, Gaussian and
exponential distributions, A is limited to a value of
order 1, so Z > 1 for large N and the optimal path
is always in the weak disorder regime. Note that for

these distributions, A is independent of a.
In general, one can prove that A — oo for a
given distribution P(7,a) as a — oo if there exist
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Table 1.
(after [Chen et al., 2006]).

Parameters controlling the optimal paths on networks for various distributions of disorder

Name Function Distribution Domain A
1
Inverse e p T € [1,e] @pe
T
7_1/0,71
Power Law z? T € (0,1] a
a
1
Power Law (1—2) Zpltl/a T € [1, 0] a—Le
a I —pe
1/a—1
a T Ay _ pA
Power Law T A Te[(1-A)%1] a1z (1—po)A
_ —(In7)?/2a? /o
V2aerf~1(2z—1) € &
Lognormal e 7Ta\/ﬂ 7 € (0, 00) e—lerf—1(2p.—1)]?
1
Uniform ax p 7 €[0,a] 2
2 2
. _ 2e~ T /(20%) V27peerf !
Gaussian V2aerf™1(x) R - 7 € [0, 00) m
—7/a

e

Exponential —aln(l —z)

a

—peIn(l = pe)

TE [0’ OO) Pec + (1 - pc)ln(l - pc)

a normalization function c¢(a) and a cutoff func-
tion 7(a) such that for Ve > 0,YE > 0, 3M > 0
such that for @ > M and 7 € [r(a),7(a)E],
|TP(1,a)c(a) — 1] < e. We will call such func-
tions P(7,a) “quasi-1/7” distributions because they
behave as 1/7 in a wide range of 7. Obviously
the exponential, power-law and lognormal distribu-
tions are quasi-1/7 functions, so for them, for large
enough a we can observe a strong disorder.

To test the validity of our theory, we perform
simulations of optimal paths in 2d square lattices
and ER networks. Random weights from different
disorder functions were assigned to the bonds. For
an L x L square lattice, we calculate the average
length £,p¢ of the optimal path from one lattice edge
to the opposite. For an ER network of IV nodes, we
calculate /ot between two randomly selected nodes.

Simulations for optimal paths on ER networks
are shown in Fig. 13. Here, we use the bombing algo-
rithm (see Sec. 2.4 to determine the path length
l+ in the strong disorder limit, which is related
to N by Loy ~ N¥rt = N3 [Braunstein et al.,
2003] (see Sec. 4). We see that for all disorder dis-
tributions studied, /,p scales in the same univer-
sal way with Z = l/A. For Z > 1, Lo /A is
linear with log(f~/A) as expected [Fig. 3(a)]. For
small Z = (o /A [Fig. 13(b)], lopt < loo ~ N1/3
which is the strong disorder behavior [Braunstein

et al., 2003]. Thus, we see that when NN increases,
a crossover from strong to weak disorder occurs in
the scaled optimal paths £ /A versus Z. Again, the
collapse of all curves for different disorder distribu-
tions of ER networks supports the general condition
of Eq. (62).

Next we use Eq. (62) to analyze the other
types of disorder given in Table 1 that do not have
strong disorder behavior. For a uniform distribu-
tion, P(7) = 1/a and we obtain A = 1. The parame-
ter a cancels, so Z = LY/¥ for lattices, and Z = N1/3
for ER networks. Hence for any value of a, Z < 1,
and strong disorder behavior cannot occur for a uni-
form distribution.

Next we analyze the Gaussian distribution. We
assume that all the weights 7; are positive and thus
we consider only the positive regime of the distri-
bution. Using Eq. (61) we obtain

V2rpeerf!

1o e o

A= (71)
The disorder is controlled solely by p. which is
related only to the type of network, and A cannot
take on large values. Thus, also for the Gaussian
P(7,a), all optimal paths are in the weak dis-
order regime. Similar considerations lead to the
same conclusion for the exponential distribution

where A = —pcIn(1 —p.)/(pe + (1 — pe)In(l = pe)).
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Fig. 13. The function opt/A for ER networks after scaling, where (a) is a linear-log plot and (b) is a log-log plot. Distribu-

tions used are power law z® with 10 < a < 30 where 0 < z < 1, 2 with @ = 30 and the range of A < z < 1 with A = 0.6
or 0.8, and lognormal distribution with 10 < a < 30. The straight line in (a) indicates weak disorder and the straight line in

(b) indicates strong disorder (after [Chen et al., 2006]).

Simulation results for the Gaussian distribution
shown in Fig. 14 display only weak disorder (i.e.
no weak-strong disorder crossover), thus support-
ing the above conclusions.

To summarize, in this section we have pre-
sented a criterion for the inverse disorder strength
Z on the optimal path in weighted networks for

10 T

o Gaussian 6=10
- o Gaussian 6=20 g

©Gaussian 6=30

~ Gaussian 6=40

8,

10 20 30 40

Fig. 14. The optimal path for Gaussian distribution of
weights for ER networks. Note that these curves would col-
lapse after scaling to the curves in Fig. 13 in the weak disorder
tail of large Z~! (after [Chen et al., 2006]).

general distributions P (7, a). We show an analytical
expression, Eq. (61), which fully characterizes the
behavior of the optimal path. Simulation of several
distributions support these analytical predictions.
It is plausible that the criterion of Eq. (61) is valid
also for other physical properties in weighted net-
works — such as conductivity and flow in random
resistor networks — due to a recently-found close
relation between the optimal path and flow [Strel-
niker et al., 2004; Wu et al., 2005].

7. Scaling of Optimal-Path-Lengths
Distribution with Finite Disorder
in Complex Networks

In this chapter we present further support [Kalisky
et al., 2005] for the general analytical results pre-
sented in Sec. 6.2. The question is how the different
optimal paths in a network are distributed? The dis-
tribution of the optimal path lengths is especially
important in communication networks, in which the
overall network performance depends on the dif-
ferent path lengths between all nodes of the net-
work, and not only the average. Sreenivasan et al.
[2004] studied the probability distribution P({opt)
of optimal path lengths in an ER network in the SD
limit. The scaled curve for P(4yp) for different net-
work sizes is shown in Fig. 15 in a log-log plot. We
find that similarly to the behavior of self-avoiding
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Scaled curve for the probability distribution P(lopt) of optimal path lengths for network sizes N =

1024, 2048, 4096, 8192, 16384, 32768, 65536. The gray curve represents Maxwellian fit given by Eq. (72) (after [Buldyrev et al.,

2003]).

walks [de Gennes, 1979] there are two regimes in
this distribution, the first one being a power law
P(lopt) ~ (Lopt)? which is evident from the figure,
with g =~ 2. The second regime is an exponential
P(lopt) ~ e Ol where C' is a constant and o
is around 2. This leads us to the conjecture that
the distribution may have a Maxwellian functional
form:

402 e~ Coni 1o)?
Valy

where ¢, = /m({opt)/2 is the most probable value
of £opt. The solid line in the figure is the plot of this
function and as seen, it agrees with our numerical
results.

The exponents g and § can be obtained from
the following heuristic arguments. The right tail of
the distribution P({opt) is determined by the distri-
bution of the IIC size in the network of N nodes. At
percolation threshold (Sec. 6), N nodes are divided
into N/2 clusters, obeying the power law distribu-
tion. However, the sum of all the cluster sizes is
equal to N, thus the distribution of the largest clus-
ter sizes must have a finite size exponential cutoff
P(S) ~ exp(—CYS), as for the distribution of the
segments of an interval divided by random parti-
tions. Since S ~ Ef)lf)t, we have § = dy.

P(lopt) = (72)

To find the left tail distribution, we use the
concept of MST. The chemical diameter of the
MST is lopy while its mass is N ~ E})I/)lt/"p“. Due
to self-similarity of the MST the number of nodes
n(¢) within a chemical distance ¢ also scales as
n(€) ~ £Y/vert Thus the probability density of the
of the optimal path for small values of ¢ scales as
dn(0)/dt = (Y/vor=1 Hence g = 1/vgp; — 1. We
expect that our conjecture is valid also for SF net-
works. Using Eqgs. (37) and (38) we have:

2\ > 4, ER
0=de= %,3<A§4 ’ (73)
and
2\ > 4, ER
7= X%?3<A§4 ' (74)

A recent work has studied the distribution form
of shortest path lengths on minimum spanning trees
[Braunstein et al., 2004], which corresponds to opti-
mal paths on networks with large variation in link
weights (a — 00).
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Using the scaling derived in Sec. 6, more
precisely:

(a) ~ (o F <£°° ) , (75)
ape

where p. is the percolation threshold and /., ~
NYert ig the optimal path length for strong disorder
(a — 00). For Erdés-Rényi (ER) graphs vope = 1/3.
We generalize these results and suggest that the dis-
tribution of the optimal path lengths has the follow-
ing scaling form:

1 14 1 Vs
P(EopmN’ a) ~ E_G < €0pt>p—7> . (76)
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Fig. 16.

The parameter Z = (1/p.)({s/a), which is equiv-
alent to Z in Eq. (62), determines the functional
form of the distribution. Relation (76) is supported
by simulations [Kalisky et al., 2005] for both ER and
SF graphs, including SF graphs with 2 < A < 3, for
which p. — 0 with system size N [Cohen et al.,
2000].

We simulate ER graphs with weights on
the links for different values of graph size N,
control parameter a, and average degree (k)
(which determines p. = 1/(k)). We then gener-
ate the shortest path tree (SPT) using Dijkstra’s
algorithm (see Sec. 2.2) from some randomly

| *P(l)

Optimal path lengths distribution, P(4opt), for ER networks with (a,b) Z = (1/pc)(foo/a) = 10 and (c,d) Z = 3.

(a) and (c) represent the unscaled distributions for Z = 10 and Z = 3 respectively, while (b) and (d) are the scaled distribu-
tion. Different symbols represent networks with different characteristics such as size N = 2000, 4000, 8000 (which determines
loo ~ N'/3), average degree (k) = 3,5,8 (which determines p. = 1/(k)), and disorder strength a = foo/(peZ). Results were

averaged over 1500 realizations (after [Kalisky et al., 2005]).
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chosen root node. Next, we calculate the prob-
ability distribution function of the optimal path
lengths for all nodes in the graph [Kalisky et al.,
2005].

In Fig. 16 we plot log P(Lopt, N, a) versus Lopt/
U for different values of N, a, and (k). A collapse
of the curves is seen for all graphs with the same
value of Z = (1/p.)(loo/a).

0.06¢
0.05}
0.04;
0.03;
0.02;
0.01} j

P(1)

0.03}

0.02}

P()

0.01}

100 150

0 50

(¢)

Figure 17 shows similar plots for SF graphs —
with a degree distribution of the form P(k) ~ k=
and with a minimal degree m. Scale-free graphs
were generated according to the “configuration
model” or Molloy Reed algorithm (see Sec. 2.1)
[Molloy & Reed, 1998].7 A collapse is obtained for
different values of N, a, A and m, with A > 3 and
for the same values of Z.

[ *P(l)

[_*P(l)

(d)

Fig. 17. Optimal path lengths distribution, P(l), for SF networks with (a,b) Z = (1/p¢)(fo/a) = 10 and (c,d) Z = 2. (a) and
(c) represent the unscaled distributions for Z = 10 and Z = 2 respectively, while (b) and (d) are the scaled distribution. Dif-
ferent symbols represent networks with different characteristics such as size N = 4000, 8000 (which determines fo ~ NY°Pt),
A =3.5,5 and m = 2 (which determine p¢), and disorder strength a = loo/(pcZ). Results were averaged over 250 realizations

(after [Kalisky et al., 2005]).

"Note that the minimal degree is m = 2 thus ensuring that there exists an infinite cluster for any A, and thus 0 < p. < 1. For
the case of m = 1 there is almost surely no infinite cluster for A > A¢ = 4 (or for a slightly different model, A\¢ = 3.47875),
resulting in an effective percolation threshold pe. = (k)/{k(k — 1)) > 1.
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Next, we study SF networks with 2 < A\ < 3.
In this regime the second moment of the degree dis-
tribution (k2?) diverges, leading to several anoma-
lous properties [Cohen et al., 2000; Cohen & Havlin,
2003; Callaway et al., 2000]. For example, the per-
colation threshold approaches zero with system size
according to Eq. (25): p. ~ Nfii—? — 0, and the
optimal path length /., in SD was found numeri-
cally to scale logarithmically with N compared to
polynomially, in A > 3 [Braunstein et al., 2003].
Nevertheless, it seems from Fig. 18 that the opti-
mal paths probability distribution for SF networks
with 2 < A < 3 exhibits similar collapse for differ-
ent values of N and a for the same Z (although its
functional form is different compared to the A\ > 3
case) [Kalisky et al., 2005].

We present evidence that the optimal path is
related to percolation [Sreenivasan et al., 2004].
The numerical results suggest that for a finite dis-
order parameter a, the optimal path (on aver-
age) follows the percolation cluster in the network
(i.e. links with weight below p.) up to a typical
“characteristic length” & = ap., before deviating
and making a “shortcut” (i.e. crossing a link with
weight above p.). For length scales below ¢ the
optimal path behaves as in strong disorder and
its length is relatively long. The shortcuts have an
effect of shortening the optimal path length from
a polynomial to logarithmic form according to the
universal function F'(u) [Eq. (75)]. Thus, the opti-
mal path for finite a can be viewed as consisting

0.1}

0.08;

= 0.06;
o

0.04;

0.02;

(a)

Fig. 18.
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of “blobs” of size £ in which strong disorder per-
sists. These blobs are interconnected by short-
cuts, which result in the total path being in weak
disorder.

We next present direct simulations supporting
this argument [Kalisky et al., 2005]. We calculate
the optimal path length ¢(a) inside a single network
of size N, for a given a, and find (Fig. 19) that it
scales differently below and above the characteristic
length & = ap.. For each node in the graph we find
lmin, which is the number of links (“hopcounts”)
along the shortest path from the root to this node
without regarding the weight of the link.

In Fig. 19 we plot the length of the optimal path
{(a), averaged over all nodes with the same value of
lin for different values of a. The figure strongly
suggests that l(a) ~ exp(min) for length scales
below the characteristic length & = ap. [see the
linear regime in Fig. 19(b)], while for large length
scales £(a) ~ lpin.

For length scales smaller than & we have
Lopt = ANY3 and flpin = BInN, where A

and B are constants. Thus N = exp ({min/B)
and lopy = Aexp (lmin/3B). Consequently, we
expect that: o /& = Aexp (Umin/3B)/§ =

Aexp [(Imin —3B1n¢)/3B]. We find the best scal-
ing in Fig. 19 for B = 2/3In(k).

This is consistent with our hypothesis that
below the characteristic length (£ = ape) lmin ~
log N and [l(a) ~ N1/3, while fmin ~ log N and
l(a) ~ log N above.

1.5t
1
o
—8 i ‘v
; o
0 1 2
"

(b)

Optimal path lengths distribution function for SF graphs with A = 2.5, m = 2 and with Z = (1/p¢)(¢o/a) = 10.

(a) Represents the unscaled distribution for Z = 10 while (b) shows the scaled distribution. Different symbols represent graphs
with different characteristics such as size N = 2000, 4000, 8000, 1600 (which determines £oc ~ log(N) and pc ~ N -1/ 3)7 and
disorder strength a = ¢~ /(pcZ). Results were averaged over 1500 realizations (after [Kalisky et al., 2005]).
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Transition between different scaling regimes for the optimal path length I(a) inside an ER graph with N = 128 000

nodes and (k) = 10. (a) The unscaled, and (b) the scaled length of the optimal path I(a) averaged over all nodes with same
value of £piy. Different symbols represent different values of the disorder strength a. For length scales £(a) smaller than the
“characteristic length”, & = ape, [(a) grows exponentially relative to the shortest hopcount path £y, (see solid line). This is

consistent with l(a) ~ N 1/3 and lmin ~ log N inside the range of size £ = apc. For length scales above £ both quantities scale

as log N (after [Kalisky et al., 2005]).

In order to better understand why the distribu-
tions of £ope depend on Z according to Eq. (76), we
suggest the following argument. The optimal path
for a — 00, was shown to be proportional to N/3
for ER graphs and NA=3)/(=1) for SF graphs with
3 < A < 4 [Braunstein et al., 2003]. For finite a
the number of shortcuts, or number of blobs, is
Z =lso/€ = lx/ap.. The deviation of the optimal
path length for finite a from the case of a — oo is a
function of the number of shortcuts. These results
explain why the parameter Z = {,/ap. determines
the functional form of the distribution function of
the optimal paths (see also Sec. 6.2).

To summarize, we have shown that the optimal
path length distribution in weighted random graphs
has a universal scaling form according to Eq. (76).
We explain this behavior and demonstrate the tran-
sition between polynomial and logarithmic behav-
ior of the average optimal path in a single graph.
Our results are consistent with results found for
finite dimensional systems [Porto et al., 1999; Wu
et al., 2005; Strelniker et al., 2004]: In finite dimen-
sion the parameter controlling the transition is Z =
LY Jap,, where L is the system length and v is the
correlation length critical exponent as in Eq. (65).
This is because only the “red bonds” — bonds that
when cut would disconnect the percolation cluster

[Stanley, 1977; Coniglio, 1982] — control the tran-
sition (see also Sec. 6.2).

8. Scale-Free Networks Emerging
from Weighted Random Graphs

In this section we introduce a simple process that
generates random scale-free networks with A = 2.5
from weighted Erdos-Rényi graphs [Kalisky et al.,
2006]. We further show that the minimum span-
ning tree (MST) on an Erd6s—Rényi graph is related
to this network, and is composed of percolation
clusters, which we regard as “super nodes”, inter-
connected by a scale-free tree. We will see that
due to optimization this scale-free tree is domi-
nated by links having high weights — significantly
higher than the percolation threshold p.. Hence, the
MST naturally distinguishes between links below
and above the percolation threshold, leading to a
scale-free “supernode network”. Our results may
explain the origin of scale-free degree distribution
in some real world networks.

Consider an Erdés—Rényi (ER) graph with N
nodes and an average degree (k), thus having a total
of N (k)/2 links. To each link we assign a weight cho-
sen randomly and uniformly from the range [0, 1].
We define black links to be those links with weights
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Fig. 20. Sketch of the “supernode network”. (a) The original ER network, partitioned into percolation clusters whose sizes
s are power-law distributed, with ns ~ s~ where 7 = 2.5 for ER graphs. The “black” links are the links with weights below
Ppe, the “dotted” links are the links that are removed by the bombing algorithm, and the “gray” links are the links whose
removal will disconnect the network (and therefore are not removed even though their weight is above p¢). (b) The “supernode
network”: the nodes are the clusters in the original network and the links are the links connecting nodes in different clusters
(i.e. “dotted” and “gray” links). The supernode network is scale-free with P(k) ~ k~* and A = 2.5. Notice the existence of
self loops and of double connections between the same two supernodes. (¢) The minimum spanning tree (MST), composed of
black and gray links only. (d) The MST of the supernode network (“gray tree”), which is obtained by bombing the supernode
network (thereby removing the “dotted” links), or equivalently, by merging the clusters in the MST to supernodes. The gray
tree is scale-free, with A = 2.5 (after [Kalisky et al., 20006]).

below a threshold p. = 1/(k). Two nodes belong to
the same cluster if they are connected by black links
[Fig. 20(a)].

From Sec. 6 follows that the number of clus-
ters of s nodes scales as a power law, ng ~ s 7,

with 7 = 2.5 for ER networks. Next, we merge all

nodes inside each cluster into a single “supernode”.
We define a new “supernode network” [Fig. 20(b)]
of Ny, supernodes [Sreenivasan et al., 2004]. The
links between two supernodes [see Figs. 20(a) and
20(b)] have weights larger than p.. The degree dis-
tribution P(k) of the supernode network can be
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Fig. 21. The degree distribution of the supernode network

of Fig. 1(b), where the supernodes are the percolation clus-
ters, and the links are those with weights larger than pe (O).
The distribution exhibits a scale-free tail with A &~ 2.5. If we
choose a threshold less than p., we obtain the same power
law degree distribution with an exponential cutoff. The dif-
ferent symbols represent slightly different threshold values:
pe — 0.03 (O) and pe — 0.05 (A). The original ER network
has N = 50000 and (k) = 5. Note that for k = (k) the degree
distribution has a maximum (after [Kalisky et al., 2006]).

obtained as follows. Every node in a supernode has
the same (finite) probability to be connected to a
node outside the supernode. Thus, we assume that
the degree k of each supernode is proportional to
the cluster size s, which obeys ng ~ s~25. Hence
P(k) ~ k=, with A = 2.5, as supported by sim-
ulations shown in Fig. 21. Furthermore, we also
see that if the threshold for obtaining the clus-
ters which are merged into supernodes is changed
slightly, the degree distribution still remains scale
free with A = 2.5, but with an exponential cut-
off. This is an indication of the fact that there
are still supernodes of high degree which are con-
nected to many other (small) supernodes by links
with weights significantly higher than p.; if this was
not the case, a small change in the threshold would
cause many clusters to merge and destroy the power
law in the supernode network degree distribution.
We next show that the MST on an ER graph
is related to the supernode network, and therefore
also exhibits scale-free properties. In the MST each
path between two sites on the MST is the opti-
mal path in the “strong disorder” limit [Cieplak

et al., 1996; Dobrin & Duxbury, 2001}, meaning that
along this path the maximum barrier (weight) is the
smallest possible [Dobrin & Duxbury, 2001; Braun-
stein et al., 2003; Sreenivasan et al., 2004].

Here we use the bombing algorithm (see
Sec. 2.4). If the removal of a link disconnects the
graph, we restore the link and mark it “gray”;
otherwise the link [shown dotted in Fig. 20(a)] is
removed. The links that are not bombed are marked
as “black”. In the bombing algorithm, only links
that close a loop can be removed. Since below crit-
icality loops are negligible [Erdés & Rényi, 1959;
Albert & Barabasi, 2002] for ER networks (d — 00),
bombing does not modify the percolation clusters —
where the links are black and have weights below p..
Thus, bombing modifies only links outside the clus-
ters, so actually it is only the links of the supernode
network that are bombed. Hence the MST resulting
from bombing is composed of percolation clusters
(composed of black links) and connected by gray
links [Fig. 20(c)].

From the MST of Fig. 20(c) we now gener-
ate a new tree, the MST of the supernode net-
work, which we call the “gray tree”, whose nodes
are the supernodes and whose links are the gray
links connecting them [see Fig. 20(d)]. Note that
bombing the original ER network to obtain the
MST of Fig. 20(c) is equivalent to bombing the
supernode network of Fig. 20(b) to obtain the gray
tree, because the links inside the clusters are not
bombed. We find [Fig. 22(a)] that the gray tree
has also a scale-free degree distribution P(k), with
A = 2.5 — the same as the supernode network.®
We also find [Fig. 22(b)] the average path length
Ugray scales as lgray ~ log Ngn ~ log N [Sreenivasan
et al., 2004].% Note that even though the gray tree
is scale-free, it is not ultra-small [Cohen & Havlin,
2003], since the length does not scale as log-log N.

Next we show that the bombing optimiza-
tion, which leads to the MST, yields a significant
separation between the weights of the links inside
the supernodes and the links connecting the supern-
odes. As explained above, the MST is optimal in two
senses: (i) the total weight of all links is minimal, (ii)
any path between any two nodes on the MST will
encounter the smallest maximal barrier (weight)
between these nodes. The last property is common
to many physical systems (e.g. the protein folding

8MSTs on scale-free networks were found to retain the original network’s degree distribution [Szabé et al., 2003; Kim et al.,

2004; Macdonald et al., 2005].

9MSTs on scale-free networks with A = 2.5 were found to retain the original network’s degree distribution.
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(a) The degree distribution of the “gray tree” (the MST of the supernode network, shown in Fig. 20(d)), in which

the supernodes are percolation clusters and the links are the gray links. Different symbols represent different threshold values:
pe (O), pe +0.01 (O) and pe + 0.02 (A). The distribution exhibits a scale-free tail with A &~ 2.5, and is relatively insensitive
to changes in pc. (b) The average path length fgray on the gray tree as a function of original network size. It is seen that

Lgray ~ log Nsn ~ log N (after [Kalisky et al., 2006]).
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(a) The average weights w; along the optimal path of an ER graph with (k) = 5, sorted according to their rank.

Different symbols represent different system sizes: N = 2000 (O), N = 8000 (O) and N = 32000 (A). Below p. = 0.2, the
weights are uniformly distributed, while weights above p. are significantly higher and independent of N. (b) Cluster size versus
the minimal gray link emerging from each cluster, for ER graphs with (k) =5 and N = 10000. Small clusters are associated
with higher weights because they have a small number of exits and thus cannot be optimized (after [Kalisky et al., 2006]).

network — see below). Accordingly, we study the
weights encountered when traveling along a typical
path on the MST.

We consider all pairs of nodes in the original
MST of N nodes [Fig. 20(c)] and calculate the typ-
ical path length ¢y, which is the most probable
path length on the MST. For each path of length
liyp we rank the weights on its links in descending
order. For the largest weights (“rank 1 links”), we

calculate the average weight w,—; over all paths.
Similarly, for the next largest weights (“rank 2
links”) we find the average w,—5 over all paths, and
so on up to r = liyp. Figure 23(a) shows w, as a
function of rank r for three different network sizes
N = 2000, 8000 and 32000. It can be seen that
weights below p. (black links inside the supernodes)
are uniformly distributed and approach one another
as N increases. As opposed to this, weights above p.
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(“gray links”) are not uniformly distributed, due to
the bombing algorithm, and are independent of N.
Actually, weights above p. encountered along the
optimal path (such as the largest weights wy, we
and ws) are significantly higher than those below
pe. Figure 23(b) shows that the links with the high-
est weights on the MST can be associated with gray
links from very small clusters [Figs. 20(a) and 20(c)]
(similar results have been obtained along the opti-
mal path).

As mentioned earlier, this property is present
also in the original supernode network and hence
the change in the threshold used to obtain the
supernodes does not destroy the power law degree
distribution but only introduces an exponential cut-
off. We thereby obtain a scale-free supernode net-
work with A = 2.5, which is not very sensitive to
the precise value of the threshold used for defining
the supernodes. For example, the scale-free degree
distribution shown in Fig. 22(a) for a threshold of
pe + 0.01 corresponds to having only four largest
weights on the optimal paths [see Fig. 23(a)]. How-
ever, even for p. + 0.02 the degree distribution is
well approximated by a scale-free distribution with
A = 2.5 [see Fig. 22(a)]. This means that mainly
very small clusters, connected with high-weight
links to large clusters, dominate the scale-free dis-
tribution P (k) of the MST of the supernode net-
work (gray tree). Hence, the bombing optimization
process on an ER graph causes a significant sepa-
ration between links below and above p. to emerge
spontaneously in the system, and by merging nodes
connected with links of low weights, a scale-free net-
work can arise.

The process described above may be related to
the evolution of some real world networks. Consider
a homogeneous network with many components
whose average degree (k) is well defined. Suppose
that the links between the components have dif-
ferent weights, and that some optimization pro-
cess separates the network into nodes which are
well connected (i.e. connected by links with low
weights) and nodes connected by links having much
higher weights. If the well-connected components
merge into a single node, this results in a new
heterogeneous supernode network with scale free
degree distribution.

An example of a real world network whose evo-
lution may be related to this model is the protein
folding network, which was found to be scale-free

with A ~ 2.3 [Rao, 2004]. The nodes are the pos-
sible physical configurations of the system and the
links between them describe the possible transitions
between the different configurations. We assume
that this network is optimal because the system
chooses the path with the smallest energy barrier
from all possible trajectories in phase space. It
is possible that the scale-free distribution evolves
through a similar procedure as described above for
random graphs: adjacent configurations with close
energies (nodes in the same cluster) cannot be dis-
tinguished and are regarded as a single supernode,
while configurations (clusters) with high barriers
between them belong to different supernodes.

A second example is computer networks.
Strongly interacting computers (such as comput-
ers belonging to researchers from the same com-
pany or research institution) are likely to converge
into a single domain, and thus domains with various
sizes and connectivities are formed. This network
might be also optimal, because packets destined to
an external domain are presumably routed through
the router which has the best connection to the tar-
get domain.

To summarize, we have seen that any weighted
random network hides an inherent scale-free
“supernode network.”'% We showed that the min-
imum spanning tree, generated by the bombing
algorithm, is composed of percolation clusters con-
nected by a scale-free tree of “gray” links. Most
of the gray links connect small clusters to large
ones, thus having weights well above the percolation
threshold that do not change with the original size
of the network. Thus the optimization in the process
of building the MST distinguishes between links
with weights below and above the threshold, leading
to a spontaneous emergence of a scale-free “supern-
ode network”. We raise the possibility that in some
naturally optimal real-world networks, nodes con-
nected well merge into one single node, and thus a
scale-free network emerges.

9. Partition of the Minimum Spanning
Tree into Superhighways and Roads

The centrality, C, quantifies the “importance” of
a node for transport in the network. Moreover,
identifying the nodes with high C' enables, as shown
below, to improve their transport capacity and thus

10Gimilar results can also be obtained for graphs embedded in two or three dimensions, with different power law exponents.
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improve the global transport in the network. Sev-
eral definitions of centrality exists. Here we deal
with the “betweenness centrality” which is defined
as the relative number of shortest path in the net-
work passing through a node (or a link). The proba-
bility density function (pdf) of C' was studied on the
MST for both scale-free (SF) [Barabési & Albert,
1999] and Erdés-Rényi (ER) [Erdés & Rényi, 1959,
1960] networks and found to satisfy a power law,

Prsr(C) ~ COMST (77)

with dysT close to 2 [Goh et al., 2005; Kim et al.,
2004]. An important question is whether there are
substructure of the MST which are more central
and play a major role on the transport. Wu et al.
[2006] showed that a sub-network of the MST, the
infinite incipient percolation cluster (IIC) has a sig-
nificantly higher average C' than the entire MST —
i.e. the set of nodes inside the 1IC are typically used
by transport paths more often than other nodes in
the MST [Wu et al., 2006]. In this sense the IIC can
be viewed as a set of superhighways (SHW) in the
MST. The nodes on the MST which are not in the
IIC are called roads, due to their analogy with roads
of less traffic (usually used by local residents). We
demonstrate the impact of this finding by showing
that improving the capacity of the superhighways
(IIC) is significantly a better strategy to enhance
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global transport compared to improving the same
number of links with the highest C' in the MST,
although they have higher C' [Wu et al., 2006]. This
counterintuitive result shows the advantage of iden-
tifying the I1C subsystem, which is very small com-
pared to the full network. These results are based
on extensive numerical studies for centrality of the
IIC, and comparison with the centrality of the entire
MST [Wu et al., 2006; Newman, 2001], as described
below. ER and SF network of size N are gener-
ated by the methods explained in Sec. 2.1. Multiple
connections between two nodes and self-loops in a
single node are disallowed. To construct a weighted
network, a weight w; is assigned to each link from
a uniform distribution between 0 and 1. The MST
is obtained from the weighted network using Prim’s
algorithm [Ahuja et al., 1993] (see Sec. 2.5). Once
the MST is built, one can compute the value of C' of
each node by counting the number of paths between
all possible pairs passing through that node and
normalize C' by the total number of pairs in the
MST, N(N —1)/2, which ensures that C is between
0 and 1.'' The IIC of ER and SF networks is sim-
ulated as explained in Sec. 2.6.

To quantitatively study the centrality of the
nodes in the IIC, we calculate the pdf, Prc(C) of C.
Figure 24 shows that for all three cases studied, ER,
SF and square lattice networks, Pric(C) for nodes
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(b) SF Networks A = 4.5

Fig. 24. The pdf of the centrality C' of nodes for (a) ER graph with (k) =4, (b) SF with A = 4.5, (c) SF with A = 3.5 and
(d) 90 x 90 square lattice. For ER and SF, N = 8192 and for the square lattice N = 8100. We analyze 10* realizations. For
each graph, the full circles show Py;c(C); the empty circles show Ppygr(C) (after [Wu et al., 2006]).

" This C' measurement is equivalent to counting the number of times a node (link) is used by the set of optimal paths linking

all pairs of nodes, in the limit of strong disorder.
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satisfies a power law
Prc(C) ~ C e, (78)
where
1.2 [ER,SF]
dric ~ o (79)
1.25 [square lattice]

Moreover, from Fig. 24, it is seen that ¢ <
oMmsT, implying a larger probability to find a larger
value of C' in the IIC compared to the entire MST.
The values for gt are consistent with those found
in [Goh et al., 2005]. Similar results for the cen-
trality of the links were obtained. The results thus
show that the IIC is like a network of superhighways
inside the MST. When we analyze centrality of the
entire MST, the effect of the high C' of the IIC is
not seen since the IIC is only a tiny fraction of the
MST. Some results are summarized in Table 2.

The values of dvyst and d¢ can be under-
stood from the following scaling arguments, based
on self-similarity properties of the MST and the
IIC. Similar arguments are used in [Stauffer &
Aharony, 1994; Bunde & Havlin, 1996] to express
exponent 7, describing the cluster size distribution

Table 2. Results for the IIC and the MST (after [Wu et al.,
2006)).
ER SF (A=4.5) SF (A=3.5) Square Lattice
Sne 1.2 1.2 1.2 1.25
Sust 1.6 1.7 1.7 1.32
Vopt  1/3 1/3 0.2 0.61
(u)  0.29 0.20 0.13 0.64
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(Continued)

at percolation threshold on a lattice in terms of the
cluster fractal dimension and the dimension of the
lattice. Indeed, the majority of nodes are connected
through the superhighway links, whose centrality
is proportional to N2. The number of these links
for the entire network scales as fo(N) ~ N1/vovt
[Braunstein et al., 2003; Wu et al., 2005]. Thus
small regions of the MST of chemical diameter ¢
consists of n!/¥rt nodes. These regions have length
loo(n) ~ nl/vert. These roads connect the nodes
in this region with the rest of the nodes of the
MST, and thus their centrality is at least n/N. The
total number of such links in all the regions of size
n is m(n) = lo(n)N/n ~ n¥e»t~1 This is the
number of links with centrality larger than nNV.
Thus number of links with centrality exactly nN is
m(n)—m(n+1) ~ n¥ort=2 = p=%sT_ Using Eq. (38)
we have:

20X >4, ER
dust =14\ . (80)

Similar arguments lead to the centrality distribu-
tion of the nodes on the IIC. The small regions of
chemical diameter ¢ have centrality larger or equal
to Nn(¢). The number of links in the IIC belonging
to these regions is s(¢) = (% [Cohen et al., 2002].
The total number of such regions is S/s(¢), thus the
total number of the links of the IIC with centrality
larger than Nn(¢) is m[n(f)] = €/s(f) ~ £1=9 =



Optimal Path and Minimal Spanning Trees in Random Weighted Networks 2249

1—dy)

n! Yopt - Accordingly

%,)\>4, ER

o =1+ (dg— 1)V0pt = A\
_— A<4
)\_1,3< <

(81)

The values predicted by Egs. (80) and (81) are in
good agreement with the simulation results pre-
sented in Table 2.

To further demonstrate the significance of the
I1C, we compute the average (C) for each realization
of the network over all nodes. Figure 27, shows the
histograms of (C) for both the IIC and for the other
nodes on the MST. We see that the nodes on the
IIC have significantly larger (C) compared to the
other nodes of the MST.

Figure 25 shows a schematic plot of the SHW
inside the MST and demonstrates its use by the
path between pairs of nodes. The MST is a “skele-
ton” subset of links inside the network, which plays
a key role in transport between the nodes. How-
ever, the IIC in the MST is like the “spine in the
skeleton” , which plays the role of the superhighways
inside a road transportation system. To illustrate
our result a car can drive from the entry node A on
roads until it reaches a superhighway, and finds the
exit which is closest to node B. Thus those nodes
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Fig. 25. Schematic graph of the network of connected super-
highways (heavy lines) inside the MST (shaded). A, B and
C are examples of possible entry and exit nodes, which con-
nect to the network of superhighways by “roads” (thin lines).
The middle size lines indicate other percolation clusters with
much smaller size compared to the IIC (after [Wu et al.,
2006]).

which are far from each other in the MST use the
IIC superhighways more than those nodes which are
close to each other. In order to demonstrate this, we
compute f, the average fraction of pairs of nodes
using the shortest paths of the IIC, as a function
of /\isT, the distance between a pair of nodes on
the MST (Fig. 26). We see that f increases and
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(a) ER Networks (k) =4 (b) SF Networks A = 4.5
Fig. 26. The average fraction, (f), of pairs using the SHW, as a function of ¢\jsT, the distance between the pair on the MST.

(a) ER graph with (k) = 4, (b) SF with A\ = 4.5, (¢) SF with A = 3.5 and (d) square lattice. For ER and SF: (O)N = 1024 and
(O)N = 2048 with 10? realizations. For square lattice: (O)N = 1024 and ()N = 2500 with 10® realizations. The z-axis is
rescaled by N¥°pt, where vopy = 1/3 for ER and for SF with A > 4, and vopt = (A —3)/(A —1) for SF networks with 3 < X < 4
[Braunstein et al., 2003]. For the L x L square lattice, fpigT ~ Lovt with dopt = 1.22 and since L?> =N, Vopt = dopt /2 =~ 0.61
[Cieplak et al., 1996; Porto et al., 1999] (after [Wu et al., 2006]).
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we analyze 1000 network configurations (after [Wu et al., 2006]).
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The normalized pdf for superhighway and roads of (C), the C' averaged over all nodes in one realization. (a) ER
network, (b) SF network with A = 4.5, (c¢) SF network with A = 3.5 and (d) square lattice network. To make each histogram,
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(a) The average usage (u) = ({r1c/¢msT) for different networks, as a function of the number of nodes N. O (ER

with (k) = 4), O (SF with A = 4.5), ¢ (SF with A = 3.5), A (L x L square lattice). The symbols (r>) and (<1) represent the
average usage for ER with (k) = 4 when the two largest percolation clusters and the three largest percolation clusters are
taken into account, respectively. (b) The ratio between the flow using strategy I, Fy, and that using strategy II, Fgy, as a
function of the factor of improving conductivity/capacity. The inset is the ratio between the flow using strategy I and the
flow in the original network, Fy. The data are all for ER networks with N = 2048, (k) = 4 and n = 50(0), n = 250(0) and
n = 500(0). The unfilled symbols are for current flow and the filled symbols are for maximum flow (after [Wu et al., 2006]).

approaches one as f\gt grows. We also show that
f scales as fygp/NVert for different system sizes,
where vqp¢ is the percolation connectedness expo-
nent [Braunstein et al., 2003; Wu et al., 2005].

The next question is how much the IIC is
used in transport on the MST? We define the [IC
superhighway usage,

l1ic

, 82
fusT (82)

u =

where f11c is the number of links in a given path
of length /\sT belonging to the IIC superhighways.
The average usage (u) quantifies what fraction of
nodes/links of the IIC is used by the transport
between all pairs of nodes. In Fig. 28(a), we show
(u) as a function of the system size N. Our results
suggest that (u) approaches a constant value and
becomes independent of N for large N. This is sur-
prising since the average value of the ratio between
the number of nodes on the IIC and on the MST,
(Nmic/Nust), approaches zero as N — oo, show-
ing that despite the although the IIC contains only
a tiny fraction of the nodes in the entire network,
its usage for the transport in the entire network
is constant. We find that (u) ~ 0.3 for ER net-
works, (u) ~ 0.2 for SF networks with A = 4.5,
and (u) ~ 0.64 for the square lattice. The reason

why (u) is not close to 1.0 is that in addition to
the IIC, the optimal path passes also through other
percolation clusters, such as the second largest and
the third largest percolation clusters. In Fig. 28,
we also show for ER networks, the average usage
of the two largest and the three largest percolation
clusters for a path on the MST and we see that
the average usage increases significantly and is also
independent of N. However, the number of clus-
ters used by a path on MST is relatively small and
proportional to In N [Sreenivasan et al., 2004], sug-
gesting that the path on the MST uses only few
percolation clusters and few jumps between them
(of order In N') when traveling from an entry node
to an exit node on the network. When N — oo
the average usage of all percolation clusters should
approach 1.

Can we use the above results to improve the
transport in networks? It is clear that by improv-
ing the capacity or conductivity of the highest C'
links one can improve the transport (see Fig. 28(b)
inset). We hypothesize that improving the IIC links
(strategy I), which represent the superhighways is
more effective than improving the same number of
links with the highest C' in the MST (strategy II),
despite the higher centrality. To test the hypothesis,
we study two transport problems: (i) current flow



2252 L. A. Braunstein et al.

in random resistor, networks, where each link of
the network represents a resistor, and (ii) the max-
imum flow problem well known in computer science
[Cormen et al., 1990]. We assign to each link of
the network a resistance/capacity, e®*, where x is
an uniform random number between 0 and 1, with
a = 40. The value of a is chosen such as to have
a broad distribution of disorder so that the MST
carries most of the flow [Wu et al., 2005; Sreeni-
vasan et al., 2004]. We randomly choose n pairs of
nodes as sources and other m nodes as sinks and
compute the flow between them. We compare the
transport by improving the conductance/capacity
of all links on the IIC (strategy I) by also improv-
ing the same number of links with the highest C
in the MST (strategy II). Since the two sets are
not the same and therefore higher centrality links
will be improved in II, it is tempting to suggest
that the better strategy to improve the global flow
is strategy II. However, here we demonstrate using
ER networks as an example that counterintuitively
strategy 1 is better. We also find similar advantage
of strategy I compared to strategy II for SF net-
works with A = 3.5.

In Fig. 28(b), we compute the ratio between the
flow using strategy I (Fg1) and the flow using strat-
egy II (Fyr) as a function of the factor of improv-
ing conductivity/capacity of the links. The figure
clearly shows that strategy I is better than strategy
II. Since the number of links in the IIC is relatively
very small compared to the number of links in the
whole network, it could prove to be a very efficient
strategy.

In summary, we find that the centrality of the
IIC for transport in networks is significantly larger
than the centrality of the other nodes in the MST.
Thus the IIC is a key component for transport in the
MST. We demonstrate that improving the capac-
ity /conductance of the links in the IIC is a useful
strategy to improve transport.

10. Summary

We reviewed recent studies on the scaling of the
average optimal path length /o in a disordered
network. There are two scaling regimes of fop
corresponding to the regimes of weak and strong
disorder. For ER networks and SF networks with
A >4, lopy ~ InN in the weak disorder regime

while lopy ~ N 1/3 in the strong disorder regime.
For SF networks with 3 < A < 4, lopy ~ InN

A=3
in the weak disorder regime while {op ~ N3-T in

the strong disorder regime. For SF networks with
2 <A< 3, lopt ~In N in the weak disorder regime
while £ ~ In*~! N in the strong disorder regime.
The scaling behavior of £,y in the strong disor-
der regime for ER and SF networks with A > 3
is obtained analytically using percolation theory.'?
For exponential disorder, for both ER random net-
works and SF networks we obtain a scaling function
for the crossover from weak disorder characteristics
to strong disorder characteristics. We show that the
crossover occurs when the min-max path reaches
a crossover length ¢(*(a) and ¢*(a) ~ a. Equiva-
lently, the crossover occurs when the network size
N reaches a crossover size N*(a), where N*(a) ~ a*
for ER networks and for SF networks with A > 4

and N*(a) ~ >3 for SF networks with 3 < A < 4.

We have also shown that the optimal path
length distribution in weighted random graphs has
a universal scaling form according to Eq. (76). We
explain this behavior and demonstrate the transi-
tion between polynomial to logarithmic behavior of
the average optimal path in a single graph.

Our results are consistent with results found
for finite dimensional systems [Porto et al., 1999;
Wu et al., 2005; Strelniker et al., 2005; Perlsman
& Havlin, 2005]: In finite dimension the parameter
controlling the transition is L/¥ /ape, where L is the
system length and v is the correlation length critical
exponent. This is because only the “red bonds” —
bonds that when cut would disconnect the percola-
tion cluster [Stanley, 1977; Coniglio, 1982] — con-
trol the transition.

We also show that any weighted random net-
work hides an inherent scale-free “supernode net-
work.” We showed that the minimum spanning tree,
generated by the bombing algorithm, is composed
of percolation clusters connected by a scale-free
tree of “gray” links. Most of the gray links connect
small clusters to large ones, thus having weights well
above the percolation threshold that do not change
with the size of the network. Thus the optimization
in the process of building the MST distinguishes
between links with weights below and above the
threshold, leading to a spontaneous emergence of
a scale-free “supernode network” with A = 2.5. We

12The results for SF networks with 2 < A < 3 have been obtained numerically and a theoretical explanation for these results

is still pending.
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raise the possibility that in some naturally optimal
real-world networks, nodes connected well merge
into one single node, and thus a scale-free network
emerges.

The centrality in networks for transport on the
MST is studied. We found that the centrality of
the nodes in the IIC is significantly larger than
the centrality of the other nodes in the MST. The
analytical estimation for the exponents of the cen-
trality distribution for both the MST and the IIC
are provided. Thus the IIC is a key component
for transport in the MST. As a result of this find-
ing, we demonstrated that improving the capacity/
conductance of the links in the I1C is a useful strat-
egy to improve transport which is a better strategy
compared to improving the same number of links
with the highest centrality in the MST. This is prob-
ably due to the global nature of transport which pre-
fer global improvement of the superhighways rather
than local improvement of high centrality links.
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