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Abstract
The Jagla model is a coarse-grained model of water which describes interactions between
groups of water molecules by a spherically symmetric potential characterized by a hard core, a
linear repulsive ramp and a long-range attractive ramp. The Jagla model qualitatively
reproduces the thermodynamics and dynamics of liquid water including density and diffusion
anomalies as well as certain chemical properties such the increase of solubility of small
hydrophobic particles upon cooling. We examine, via molecular dynamics simulation, the
behavior of the bead-on-a-string polymers of various lengths in the Jagla model. We find that
such polymers exhibit swelling upon cooling similar to cold denaturation of proteins in water.
We show that while for short polymers the swelling is gradual, longer polymers exhibit a
first-order-like phase transition between a globular phase at high temperatures to a random coil
state at cold temperatures. This transition is associated with the formation of a liquid–polymer
phase boundary surrounding the globule and complete dewetting of the central parts of the
globule at high temperatures. We study thermodynamics of this transition and find that the
entropy, volume, and potential energy of the solvent–random coil system is lower than those of
the globule–solvent system. Accordingly the slope of the coil–globule transition line on a PT
plane has positive slope. We present simple thermodynamic considerations similar to classical
nucleation theory, which relate the temperature of the cold swelling transition to polymer length
and relate the dewetting of the globule to its diameter and to the Egelstaff–Widom length scale.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In addition to its unique properties as a pure liquid [1–4], water
is a remarkable solvent [5–28]. Recently it was shown that
the Jagla model [29, 30] with a spherically symmetric pair
potential (figure 1(a)) reproduces not only the thermodynamic
anomalies of pure water, [31–46] (figure 1(b)) but also it
reproduces the decrease of solubility of small non-polar
compounds with temperature increase as well as the swelling
of hydrophobic polymers upon cooling [47]. The latter

phenomenon was interpreted as the basis of cold denaturation
of globular proteins [48–51]. The key feature of the Jagla
model which allows it to mimic many properties of real water is
the existence of the empty space between the particles created
by the wide repulsive ramp of the interaction potential [46]
(figure 2(a)). In real water the empty space between
water molecules is created by the directional four-coordinated
hydrogen bonds [52, 53]. This empty space shrinks upon
heating, leading to the negative thermal expansion coefficient
(density anomaly) as well as to a decrease of solubility of
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Figure 1. (a) The two-ramp spherically symmetric Jagla potential captures much of the ‘two-length scale’ physics corresponding to the first
and the second shells in water [44]. The diameter of the hard core r1 = a = 1 and the diameter of the soft core r2 = b ≈ 1.72 determine the
two length scales, corresponding to the first and second shells of water. Small steps are introduced in order to use discrete molecular
dynamics [58] (b) P–T phase diagram of the potential shown in (a). Shown are the liquid–liquid critical point (solid circle), the liquid–liquid
coexistence line (dotted line), the lines of maxima of isobaric heat capacity Cmax

P (bold solid line) and isothermal compressibility K max
T (thin

solid line) as functions of temperature at constant pressure. Near the critical point, these lines merge into the Widom line. Also shown are the
loci of temperatures of maximum and minimum density labeled Tmax and Tmin respectively (diamonds), the low density liquid (LDL) and the
high density liquid (HDL) spinodals (dashed lines) and the approximate locations of glass transitions T ′

g below which the LDL and HDL
become, respectively, low density amorphous (LDA) and high density amorphous solids (triangles). The positions of T ′

g are determined by the
positions of the heat capacity maxima caused by restoration of ergodicity upon heating of LDA and HDA [45].
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Figure 2. (a) and (b) The mechanism of the decrease of solubility of small apolar compounds in the Jagla liquid upon heating. The non-polar
compounds are modeled as hard spheres (white circles) of the same diameter a as the hard core diameter of the Jagla particles (black circles).
Gray rims indicate the area of the repulsive ramps of the Jagla particles. (a) At low temperatures, the Jagla particles prefer to stay at the
distance b corresponding to the minimum of the potential in figure 1(a). This configuration has sufficient empty space to fit the non-polar
solutes. (b) At higher temperatures, some Jagla particles migrate up the repulsive ramps of their neighbors. This migration simultaneously
causes two effects: the increase of the density upon heating (density anomaly) and the decrease of solubility upon heating caused by the
reduction of the empty spaces between Jagla particles available to the solutes. (c) The P–T phase diagram of the Jagla model with lines of
equal radius of gyration Rg of a bead-on-a-string polymer made of M = 44 hard spheres of diameter a linked by square well bonds with
maximal distance d = 1.2a. The polymer has a minimal radius at low P in the temperature range between the two critical points of the Jagla
model indicated by solid circles (the liquid–gas critical point, C1 and the liquid–liquid critical point C2). The polymer swells both upon
cooling into the density anomaly region (thick gray line) below C2 and upon heating as the system approaches the liquid–gas coexistence line.
At high pressures (P � Pc2) the non-monotonic behavior of Rg vanishes, giving way to a standard monotonic increase of Rg upon heating.
The polymer collapses as the temperature decreases towards the compressibility maxima line (dash-dot line) emanating from the liquid–liquid
critical point. This behavior is related to the fact that HDL is a poor solvent for small apolar solutes [25]. Also shown are the lines of the
first-order phase transitions for polymers of lengths M = 176 (triangles), M = 132 (squares) and M = 88 (diamonds). The top gray points
for M = 176 and M = 88 are extrapolations for the temperature and pressure at which the step in the system volume, associated with the
first-order phase transition, vanishes and the continuous behavior of the thermodynamic state functions is restored.

the small non-polar compounds which at low temperatures
can fit between the Jagla particles. In [47] it was found
that the gyration radius of small bead-on-a-string polymers
dissolved in Jagla liquid has a minimum on the P–T plane,
corresponding to the ambient conditions (figure 2(b)). The
polymers swell upon both heating and cooling, and upon
pressurizing.

While the radius of gyration of the small polymers
changes continuously with temperature, corresponding to the
second order phase transition, as expected in the vicinity of
the θ -point [59–61], the behavior of longer polymers upon
cooling into the density anomaly region becomes first-order-
like with a characteristic step in Rg(T ) (figure 3) and other
thermodynamic state functions such as volume V , energy
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Figure 3. Effect of polymer length M on the swelling behavior at
P = 0.1, below Pc2. While for small M � 88 the temperature
dependence of Rg is gradual, consistent with the standard polymer
theory, for M = 176 the system exhibits a sharp transition at
T ≈ 0.6 between the collapsed state with Rg ≈ 4 and the swollen
state with Rg ≈ 10, corresponding to cold swelling (denaturation).
Note that the values of Rg for T � 0.5 for all polymer lengths in the
solvent coincide approximately with the values of Rg of the hard
sphere polymer chains of the same length in vacuum (solid circles),
indicating that the polymers are in a random coil conformation
consistent with dissolution in a ‘good’ solvent.

U , and enthalpy H . This phenomenon is of key interest
in the theory of hydrophobic hydration on large and small
scales [7–24]. In this paper we will explore it in detail.

2. Methods

The interaction potential U(r) of the Jagla solvent particles
with attractive tail is characterized by five parameters: the hard
core diameter a, the soft core diameter b, the range of attractive
interactions c, the depth of the attractive ramp UA and the
height of repulsive ramp UR (figure 1) [29]. These parameters
can be collapsed into three independent dimensionless ratios:
b/a, c/a, and UR/UA. The ratio of the soft core and hard
core diameters, b/a, is a sensitive control parameter that,
for the purely repulsive case (UA = 0), determines the
fluid’s hard sphere (b/a ∼ 1) or water-like (b/a ∼ 7/4)
behavior [33]. The latter value of b/a corresponds closely to
the ratio of radial distances from a central water molecule to its
second and first-neighbor shells, as measured by the second-
nearest and nearest-neighbor peaks of the oxygen–oxygen
radial distribution function (≈4.5 and ≈2.8 Å, respectively).
Following [29, 42, 43] we select b/a = 1.72, c/a = 3,
UR/UA = 3.5. This choice of parameters produces a phase
diagram with several water-like features. It includes two
critical points, one corresponding to the first-order liquid–gas
transition and the other to a first-order liquid–liquid transition
at low temperatures, and a wide region of density anomaly
bounded by the locus of temperatures of maximum density
(figure 1(b)). The role of the attractive potential, b � r � c,
is simply to allow fluid–fluid transitions to occur. Water-like

thermodynamic, dynamic and structural anomalies occur even
in the purely repulsive case (UA = 0), and their appearance is
governed by the ratio b/a [32].

In this work we adapt a methodology developed in
our previous work, the discrete molecular dynamics (DMD)
method [54–58]. In order to use the DMD algorithm, we
replace the repulsive and attractive ramps with discrete steps
(40 and 8, respectively), as described in [42] (see figure 1(a)).

We measure length in units of a, time in units of
a(m/UA)1/2, where m is the particle mass, number density in
units of a−3, pressure in units of UAa−3, and temperature in
units of UA/kB. This realization of the Jagla model displays
a liquid–gas critical point at Tc1 = 1.446, Pc1 = 0.0417 and
ρc1 = 0.102, and a liquid–liquid critical point at Tc2 = 0.375,
Pc2 = 0.243, ρc2 = 0.370 [42]. We model solute particles as
hard spheres of diameter d0. The hard sphere solutes interact
with the Jagla solvent only through excluded volume repulsion,
which occurs at the contact distance of (a + d0)/2. Here, we
choose d0 = a, the hard core diameter of the Jagla solvent. The
dependence of the solubility on d0 is an important question that
will be addressed in future work.

First we study the behavior of polymers composed of M
monomers modeled by hard spheres of the same diameter as
the solute considered above, namely, d0 = a. We model
covalent bonds by linking the hard spheres with the simplest
bond potential

Ubond(r) =

⎧
⎪⎨

⎪⎩

∞ r < d1

0 d1 < r < d2

∞ r > d2,

(1)

so that the minimum extent of a bond is d1 = a and the
maximum extent is d2 = 1.2a. We simulate the trajectory of
the polymer for 105 time units at constant T and P in a cubic
box containing N = 4200 Jagla solvent particles with periodic
boundary conditions. We focus on the average polymer radius
of gyration Rg(T, P), which is indicative of compact versus
extended configurations, as well as on other thermodynamic
functions such as potential energy U , volume V , and enthalpy
H = U + PV . In all our enthalpy calculations we omit the
trivial kinetic term 3/2(N + M)kBT .

In order to relate the behavior of the polymers to the
second virial coefficient of the monomers in the framework of
the classical Flory theory [59–61], we also compute a potential
of mean force F(r) acting between two monomers separated
by a bond described by equation (1), where r = (d1 + d2)/2
and d2 − d1 = �r = 0.1a. To find F(r), we compute
the sum

∑
�pr of changes of the radial component of the

linear momentum of both solute particles due to collisions
with all Jagla particles and divide it by the total simulation
time: F(r) = ∑

�pr/�t . In these simulations we first
equilibrate the system at constant P and T to establish its
equilibrium volume V (T, P) and then perform a production
run for constant V and T . The simulations are done for N =
1000 Jagla particles and two hard spheres for t = 104 time
units. We compute the potential of mean force by integrating
F(r) from a sufficiently large cutoff rmax = 5a to a given
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Figure 4. Calculation of the second virial coefficient of hard spheres
in a Jagla liquid according to equation (3) by integration of the mean
force potential at P = 0.1UA/a3 for good (T = 0.5UA/kB) and poor
(T = 0.9UA/kB) solvent conditions. The values of B are estimated
as B(r) for maximal r . Large fluctuations of the quantity B(r),
which are present even at large r , give a sense of the error bar.
Nevertheless one can be confident that for a good solvent the value of
B is positive, while for poor solvent it is negative.

r < rmax:

Umf(r) = Umf(rmax) +
∫ rmax

r
F(r) dr, (2)

where Umf(rmax) is approximated as the logarithm of the radial
distribution function Umf(rmax) = −kBT ln[g(rmax)]. Finally,
the second virial coefficient is computed as

B(r) = 2π/3

(

a3 +
∫ r

a
(1−exp(−Umf(r)/kBT ))r 2 dr

)

. (3)

The value of B is estimated as B = limr→∞ B(r). Figure 4
shows the behavior of B(r) for T = 0.5 and T = 0.9 at
P = 0.1. We can conclude that for T = 0.5, B = 0.75±0.5 >

0, indicating good solvent conditions, while for T = 0.9,

B = −3.05 ± 0.1 < 0, indicating poor solvent conditions,
in complete agreement with the phase diagram of figure 2(b).
A systematic study of the virial coefficient as function of T and
P will be the subject of our future work.

It is proposed in [60] that in the case of a small third virial
coefficient the polymer collapse becomes first-order-like in that
the free energy develops a free energy barrier which separates
the collapsed and swollen states. Thus it would be interesting
to compute the third virial coefficient of hard spheres in the
Jagla solvent. However this calculation is very time consuming
since it requires integration in three-dimensional space. It is
known [60] that the third virial coefficient is small for rigid
polymers, which, therefore, undergo a first-order-like collapse
transition. Thus an important point in the study of polymer
behavior is the analysis of the polymer rigidity and calculation
of the conformational entropy of the polymer chain. For
polymer conformation, we compute the cosine of the angle
between subsequent bonds x = cos(��i ∧ ��i+1), its probability
density P(x) as well as its average 〈x〉, and the conformational
entropy Sx = −kB

∫ 1
−1 ln[P(x)]P(x) dx (figure 5). We can

see that 〈x〉 is very small and never exceeds 0.3. Therefore the
studied polymer is very flexible, so it is unlikely that the first-
order-like cold swelling transition that we observe is related to
the polymer rigidity.

The Egelstaff–Widom length scale [62], Re = γ KT,
where γ is the gas–liquid surface tension and KT is the
isothermal compressibility, plays an important role in the
theory of hydrophobic hydration at large scales [18]. We
find γ from constant volume simulations of the Jagla liquid
at a critical density below the gas–liquid critical point C1 and
below the liquid–liquid critical point C2 in the elongated box
Lx = L y � Lz in which the phases segregate, forming
two phase boundaries perpendicular to the z-axis (figure 6).
These phase boundaries pull together the opposite sides of
the container perpendicular to the x and y axes with forces
fx = 2γ L y and fy = 2γ Lx , respectively. These forces
decrease the Pxx and Pyy components of the stress tensor
relative to the Pzz component unaffected by the surface tension:
Pxx − Pzz = −γ /Lz and Pyy − Pzz = −γ /Lz . Figure 7 shows
the behavior of Pcoex = Pzz and γ as function of temperature

Figure 5. Analysis of the polymer backbone geometry for M = 176. (a) Distribution of bond cosine P(x) for P = 0.02UA/a3. For a swollen
configuration at low T we can see a distinct peak at x = 0.5, corresponding to the most probable angle between the bonds of 60◦. Obviously
this backbone geometry is created by the structure of the solvent. For the collapsed state, P(x) is almost flat between the largest possible
angle (x = −0.6) and zero (x = 1). (b) Average cosine, 〈x〉, and the conformational entropy, Sx , as functions of temperature for various
pressures. One can see that at the first-order swelling transition line both quantities experience a discontinuous jump, while for large pressures
the jump disappears. Interestingly, the conformational entropy of the swollen polymer is lower than that of the collapsed polymer.
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Figure 6. A snapshot of the pure Jagla liquid phase segregated into
HDL and LDL at T = 0.33 below the liquid–liquid critical point
Tc2 = 0.374. The box size is Lx = L y = Lz/2 = 16.6a and the
number of atoms is N = 3456, which corresponds to the density
ρ = 0.378, close to the critical density of the liquid–liquid critical
point. While the densities of LDL and HDL are not very different
from each other (0.24 and 0.39, respectively) the structure of the
liquids are dramatically different. Each HDL particle has on average
3.15 particles within the distance 1.3a, while in LDL this number is
0.54. The pairs of such particles are shown by bonds.

near the gas–liquid and liquid–liquid critical point. Finally,
we compute KT from the constant pressure simulations of the
pure Jagla liquid (figure 8(a)) and multiply it by 6γ to obtain
the crossover length scale 6Re at which, according to [18], the
crossover from the small scale to the large scale hydrophobic
hydration occurs.

3. Results

Figure 3 shows the appearance of the first order phase
transition for cold swelling of a sufficiently long polymer. As
pressure increases, the temperature of the first-order swelling
transition increases and the size of the step in Rg(T ) decreases
(figure 9). For pressures above the critical pressure of the
liquid–liquid phase transition, P > Pc2, the step disappears
and Rg(T ) becomes a continuous function of temperature with
a small peak at temperatures above the KT maximum on the

P–T phase diagram of the Jagla liquid. As pressure increases
further, the peak gets weaker and broader, so that one can
expect that at P → ∞, Rg(T ) becomes a monotonously
increasing function of temperature.

To understand the nature of the cold swelling transition
we analyze the MD trajectories of the system, measuring Rg,
U and V as function of temperature at constant pressure for
sufficiently large polymer length, M . We characterize energy
and volume in terms of the excess quantities of solvation per
monomer: �u = (UJ P − UJ )/M and �v = (VJ P − VJ )/M ,
respectively, where UJ P and VJ P are the potential energy and
volume of the system of N Jagla particles and a polymer of
length M at equilibrium, and UJ and VJ are the potential
energy and volume of the pure Jagla liquid consisting of the
same number of particles, N , at the same T and P . Figure 10
shows the behavior of Rg(t), �u(t) and �v(t) at low pressure
P = 0.02UA/a3 < Pc1 at two different temperatures, one
below the hypothetical cold swelling transition temperature Ts

(T = 0.45UA/kB) and another above (T = 0.55UA/kB).
The low temperature trajectory starts from the collapsed
initial conformation, while the high temperature trajectory
starts from a swollen conformation. One can see that after
some time both trajectories undergo a dramatic transition.
The swollen conformation collapses (folds) above Ts and
the collapsed conformation swells (unfolds) below Ts. This
behavior is very similar to the behavior of proteins in the
vicinity of the cold-denaturation temperature. We ran the
simulations for t = 105a

√
m/UA time units, which is

equivalent to 76 ns if one uses the values of parameters
mapping the Jagla potential to water, UA = 4750 J mol−1,
m = 0.036 kg mol−1, and a = 0.27 nm [45] for several
temperatures in the vicinity of the hypothetical Ts. The lowest
temperature at which we observe folding is T = 0.54UA/kB

and the highest temperature at which we observe unfolding is
T = 0.45UA/kB. Accordingly we conclude that the folding
temperature must be approximately T = 0.49 ± 0.05UA/kB.
One can clearly see that the change in excess volume, ��v,
and energy, ��u, during swelling are both negative, which
means that the cold swelling (denaturation) is an exothermic
process. The entropy of the unfolded state is lower than the
entropy of the folded state by ��s = 0.9kB per monomer.
Since the entropy loss due to conformational entropy of
a polymer is negligible (about 0.03kB per monomer, see
figure 5), it means that the entropy loss is due to restructuring
of solvent around the monomers.

The swelling transition which occurs for T = 0.45UA/kB

at t = 20 000 takes approximately 500 time units which is
negligible compared to the total duration of the simulation.
This is consistent with existence of a large free energy barrier
separating folded and unfolded states. Figure 10(d) shows
the conformations of the polymer during typical unfolding,
separated by hundred time units. One can see that the unfolding
starts with one of the tails of the polymer penetrating into the
liquid while a compact globule creating a cavity in the solvent
still exists. This conformation is entropically unfavorable
because the solvent around the tail loses a lot of entropy. On
the other hand the loss in energy which corresponds to the
reduction of the surface energy is still small. In section 5 we
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Figure 7. (a) Arrhenius plots of the liquid–gas and liquid–liquid coexistence lines. The gas–liquid coexistence line obeys the Arrhenius law
P(T ) = P0 exp(hv/kBT ), with hv = 5.78UA being the enthalpy of vaporization. (b) The behavior of the surface tension in liquid–gas and
liquid–liquid phase transitions as a function of temperature obtained from the stress tensor, as described in the text. Both surface tensions
vanish in the vicinity of the corresponding critical points, as expected.

Figure 8. (a) Isothermal compressibility as a function of temperature at different pressures. (b) Egelstaff–Widom length scale as a function of
temperature computed as a product of isothermal compressibility and surface tension.

will develop a formalism similar to the classical nucleation
theory based on this idea. Accordingly, before the polymer
successfully unfolds, it makes several unsuccessful attempts,
indicated by the spikes in Rg(t). Folding of the polymer goes
in the reverse way: at first, part of the polymer collapses into a
compact globule while the tail of the polymer is still in solvent.
In this case the formation of the interface around the collapsed
globule costs more energy than the entropy gain of the solvent.

At large pressure, the temperature window around the
cold swelling temperature in which no folding or unfolding
transitions occur during simulation time shrinks and finally we
reach a regime in which many folding–unfolding transitions
can be observed for the same trajectory if the temperature is
kept near the cold swelling transition (figure 11).

We collect the histograms of Rg, �u and �v. for
several temperatures near the cold swelling transition, Ts =
0.69UA/a3, P = 0.20 (figure 12). All the distributions become
clearly bimodal in the vicinity of Ts = 0.69UA/a3. One
peak corresponds to the folded state, another to the unfolded
state. Now Ts can be precisely determined as the temperature at
which the areas under both peaks are equal to each other. One
can also detect the maxima of the peaks and thus determine Rg,
�u, and �v of the folded and unfolded states at coexistence.
At higher pressures, the two peaks merge and the first-order
phase cold swelling transition gives way to a gradual transition
like in the vicinity of the critical point.

To characterize the thermodynamics of the polymer
hydration we compute the excess thermodynamic parameters
�u and �v for a wide range of temperatures, several polymer
lengths, and several pressures (figure 13). One can see that both
excess potential energy and volume for large enough M have
a discontinuous jump at low temperatures corresponding to the
cold swelling. The temperature of the transition increases as
M decreases and size of the jump decreases. For large P
and small M , the jump disappears, and the transition becomes
continuous, as one can see for P = 0.1 and M = 88.

For the swollen conformations, the excess volume and
energy does not depend on M , which would be the case
for solvation of isolated monomers. For the collapsed state
the excess energy per monomer increases when M decreases.
This clearly indicates that the energy jump is caused by the
formation of the liquid interface around the polymer globule
because the surface area scales as M2/3 < M . For the volume
we have the opposite effect, which indicates that the larger the
polymer size the more complete is the dewetting of the interior
of the globule. Note that for large enough temperatures the
effect changes its sign again. This is consistent with the fact
that at large temperatures dewetting is not complete.

The graphs also indicate that both excess energy and
volume decrease with the increase of pressure, with one
notable exception: the excess volume increases with pressure
for the cold-swollen polymer. This is consistent with the
solvation scheme illustrated in figure 2(a). This picture is

6
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Figure 9. Behavior of the radius of gyration, Rg, of a long polymer
(M = 176) as a function of temperature at different pressures. Below
the liquid–liquid critical point (P < Pc2), cold swelling has features
of the first-order phase transition, with an abrupt change of the
collapsed globular conformation of a protein to a random coil
conformation upon cooling, with both states existing in some
temperature range around the transition point for a sufficiently long
time to be investigated. At higher pressures the size of the jump in Rg

becomes smaller and eventually the cold swelling transition
completely disappears.

also consistent with the fact that the excess energy for cold-
swelled polymer becomes negative at large pressures. Indeed
at large pressures in the absence of monomers, more Jagla
particles would climb the repulsive ramp, which would lead
to an increase in energy and a decrease in volume.

Another prominent feature of the graphs are the huge
peaks in �u and �v at large T in the regions of large
compressibility caused by the gas–liquid critical point. Large
compressibility implies large density fluctuations, the presence
of which makes it easier for the polymer to produce large voids
in the structure of the liquid.

We measure the sizes of jumps in ��u and ��v as
a function of cold swelling transition temperature Ts, which
varies with pressure (figure 14). We also find the change
in enthalpy ��h = ��u + P��v and entropy ��s =
��h/Ts. Since both entropy and volume decrease for the cold
swelling transition, the slope of the cold swelling transition
line dP/dT = ��s/��v must be positive. This implies
that polymers must unfold upon pressurizing at constant
temperature. Numerical integration of dP/dT gives consistent
results with the graph Ts(P) obtained by locating the cold
swelling transition temperature from the jumps in �u, �v and
the behavior of Rg. The positive slope of the cold swelling
transition line implies that, at small temperatures, the polymer
swells upon pressurizing [25]. This phenomenon corresponds
to pressure denaturation of proteins.

4. Density profiles and Egelstaff–Widom length scale

The central paradigm of the large scale hydration theory [8, 15]
is the formation of the solvent interface around a large

hydrophobic object. Originally it was proposed that the surface
of such an object undergoes complete dewetting manifested
in the formation of a vapor-like layer of reduced density.
However, later it became clear [22] that no noticeable reduction
of the density of the liquid near the hydrophobic objects can
be observed, instead, what increase around such an object
are density fluctuations. The polymer globule is not a hard
sphere, it is porous and hence the solvent can penetrate inside
it. Here we will show that the first-order-like cold swelling
is associated with complete dewetting of the globule interior
and the formation of the polymer–liquid interface around the
polymer globule. The standard Flory–Huggens–de Gennes
theory of polymer collapse implies that the polymer interaction
with solvent can be modeled by introducing an effective
attractive potential between the monomers. However, if the
collapsed polymer globule is completely free of solvent, this
is no longer a true assumption. Accordingly we will present
simplified considerations which describe this cold swelling
transition in terms of the surface tension of the liquid around
the globule, much as in classical nucleation theory (section 5).
As a first step towards such a theory, we will show that the
collapsed globule is indeed encapsulated into an approximately
spherical phase boundary, with no solvent molecules inside it.
Figure 15 shows the average density profiles of monomers (Hs)
and Jagla particles as functions of the distance from the center
of mass of the polymer for several different temperatures. At
low pressure P = 0.02UA/a3 < Pc1, large polymers undergo
a sharp cold swelling transition at T = Ts = 0.49UA/kB

(figure 9). Here we present two density profiles for collapsed
and swelled states collected at T = 0.5UA/KB for 105 time
units during which no folding or unfolding transition occurs.

For the swollen state the density of monomers is very low
in the center and gradually decreases outwards; the density of
solvent near the center has practically no reduction. In the
collapsed state, the density of monomers stays approximately
constant in the center of the globule, ρ0 = 0.435/a3, which
corresponds to the volume per particle v0 = 2.3a3. The
solvent does not penetrate inside the radius rg = 0.29a.
These profiles strongly suggest the existence of a well-defined
polymer–solvent interface. However there is no significant
reduction of the total density near the globule, indicating the
absence of a vapor-like layer around the globule. The radius
of the completely dewetted globule rg is significantly larger
than 6Re = 2.2a that can be estimated from figure 8(b). As
can be seen from figure 9 at P < Pc1, Rg exhibits another
sharp swelling transition near the liquid–gas coexistence line at
T = 1.23UA/KB (figure 7(a)). Just below the coexistence line
the equilibrium vapor density is 0.014/a3, so one can see that
some vapor of density 0.006/a3 is present in the region of the
dewetted globule. The density of the monomers in the globule
significantly decreases compared to T = 0.5UA/kB and the
decay of polymer concentration becomes much more gradual
outside the globule. However the radius of the dewetted
globule is still the same as at low temperature.

Also, one can see a decrease of the overall particle
density near the globule. This decrease may indicate formation
of a vapor-like layer around the globule. Interestingly, at
T = 1.3UA/KB, above the coexistence line, this vapor
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Figure 10. (a) Behavior of the radius of gyration of a long polymer (M = 176) as a function of time during collapse (T = 0.55UA/kB) and
swelling (T = 0.45UA/kB) near the temperature of cold swelling, Ts = 0.49UA/kB, at P = 0.02UA/a3. Behavior of energy (b) and volume
(c) for the same trajectories as in (a). (d) The snapshots of the polymer conformation near the unfolding transition. The time interval between
the snapshots is 100 time units a

√
m/UA. The direction of time corresponds to the first row from left to right and then to the second row from

left to right.

(c)
(a) (b)

Figure 11. (a) Behavior of the radius of gyration of the long polymer (M = 176) as a function of time at the cold swelling transition
temperature Ts = 0.69UA/kB corresponding to constant pressure simulations P = 0.2UA/a3. Behavior of energy (b) and volume (c) for the
same trajectory as in (a).

(a) (b) (c)

Figure 12. Probability density functions of the thermodynamic parameters of the system at Ts = 0.69UA/kB corresponding to constant
pressure simulations at P = 0.2UA/a3: (a) radius of gyration, (b) excess potential energy, (c) excess volume.

bubble serves as a nucleus of the vapor phase. Thus, in the
simulation started at this temperature from a compact globule
conformation, the liquid surrounding the globule after some

initial period of metastability completely vaporizes, the volume
dramatically increases and the polymer completely unfolds. In
contrast, in the simulation of the pure Jagla liquid at T = 1.3

8
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Figure 13. Behavior of the excess potential energy (a) and the excess volume (b) per monomer as functions of temperature for different
polymer lengths (M = 176, 132, 88) and different pressures, (P = 0.02, 0.05, 0.1, 0.2UA/a3). The z-shape jumps in the graphs indicate the
first-order cold swelling transitions. Cold swelling is associated with both decrease in volume and energy, and hence with negative enthalpy.
The peaks in the graphs at large temperature are caused by the crossing of the system of either a liquid–gas coexistence line at
P = 0.02UA/a3 < Pc1, or the Widom line associated with the gas–liquid critical point for P > Pc1, near which the fluid properties rapidly
change from liquid-like to gas-like. In the dilute gaseous phase, as T → ∞ at constant pressure, �u and �v must both converge to zero.

or the liquid surrounding a short polymer of length M = 44,
around which no vapor is formed (figure 16), the liquid remains
metastable for the entire duration of the simulation. Thus
our results suggest that the vapor-like layer may indeed exist
around large hydrophobic objects in the vicinity of the liquid–
gas phase transition line.

For larger pressure, P = 0.2UA/a3 (figure 15(b)), near
the end of the first-order cold swelling transition line at low
temperatures (T = 0.3UA/kB) in the domain of the density
anomaly in the LDL phase, the polymer is still completely
expanded, however its density near the center is approximately
two times larger than at P = 0.02UA/a, which is consistent
with much smaller Rg values in the swollen state at P =
0.2UA/a3 than at P = 0.02UA/a3, as can be seen in figure 9.

Above the cold swelling transition at T = 0.8UA/KB, the
density profiles are very similar to those for P = 0.02UA/a3

at T = 0.5UA/KB for the collapsed state. The density of
monomers in the center of the globule is exactly the same
as for lower pressure, but the radius of complete dewetting,
rg ≈ 2.0a, decreases and becomes comparable to 6Re, which
at these conditions is ≈1.9a. This is consistent with the fact
that we are at the end of the first-order cold swelling transition
line above which dewetting can occur, because the Egelstaff–
Widom length scale, 6Re can be regarded as the minimal radius
of the hydrophobic sphere near which the phase boundary of
the liquid can be formed. At T = 0.7UA/kB, the polymer
constantly folds and unfolds (figure 11), so the density profiles
collected over the entire simulation represent average densities
for folded and unfolded states.

For high pressures, P = 0.4UA/a3 > Pc2, (figure 15(c)),
the first-order cold swelling transition completely disappears,
however Rg retains its non-monotonous character with a
maximum at T = 0.7UA/kB and a minimum at T =
1.1UA/kB. At very small temperatures (T = 0.3UA/kB) in
the domain of HDL, the polymer remains in the collapsed state
and its density near the center is the same as in the collapsed
state at low pressures, but this state is not associated with
dewetting and the density of Jagla particles inside the globule
remains high. At the temperature of maximal Rg, the density
of the polymer decreases, and the density of the Jagla particles

Figure 14. Changes of the excess thermodynamic properties at the
cold swelling first-order phase transition line Ps(Ts): potential energy
��u (dashed line), volume ��v (dotted line), enthalpy
��h = ��u + P��v (long dashed line), entropy
��s = ��h/Ts (dash–dotted line) computed for a polymer of
length M = 176. We also compute the slope of the Ps(Ts) line using
the Clapeyron equation as ��s/��v (squares) and compare the
integral of this slope (solid line) with the directly measured PS(TS)
(circles).

near its center does not decrease. At the temperature of the
minimum Rg, the density of the polymer increases again, and
the density of solvent decreases dramatically near its center and
vanishes at rg ≈ 0.5a, however this value is less than 6Re .
Thus, no well-defined liquid interface is formed around the
globule, and the first-order cold swelling transition disappears.
At very high pressure, P = 0.8UA/a3 (figure 15(d)), the
polymer density remains almost the same in the entire range
of temperatures from T = 0.3UA/kB to T = 1.5UA/kB, and
the density of solvent remains high near its center, which is
consistent with complete disappearance of cold swelling.

To further test the significance of the Egelstaff–Widom
length scale we study the density profiles for shorter polymers,
in the cases where the first-order cold swelling can still be

9
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Figure 15. Density of hard sphere monomers (Hs, solid lines) and Jagla particles (Ja, dashed lines) as functions of the distance r from the
center of mass of the polymer of length M = 176 at various pressures. (a) The lowest pressure P = 0.02UA/a3 < Pc1. Here we also show the
total density of particles (dot–dashed lines). (b) Intermediate pressure, P = 0.2UA/a3 < Pc2, at which the first-order cold swelling transition
still exists, (c) high pressure, P = 0.4UA/a3 > Pc2, at which cold swelling still takes place but becomes continuous. (d) Very high pressure,
at which cold swelling completely disappears.

observed and when it completely disappears (figure 16). We
show the density profile for the polymer of M = 88 at P =
0.02UA/a3, T = 0.7UA/kB > Ts. At T = Ts = 0.63UA/kB,
the polymer constantly folds and unfolds, but the density
distribution of volume and energy retains its bimodal character,
thus the first-order cold swelling transition is still present.
The density of the monomer near the center of the polymer
(ρ0 = 0.41/a3) is only slightly smaller than the density of
polymer of M = 176 at similar conditions. However, the
region of complete dewetting shrinks (Rg ≈ 1.8) and become
comparable to 6Re ≈ 1.8 at the same conditions. For P =
0.1UA/a3 the polymer of M = 88 unfolds gradually upon
cooling, which is consistent with the absence of dewetting
in the center of the globule even at T = 0.84UA/kB, the
temperature of the minimal Rg. A smaller polymer of M =
44 unfolds gradually even at P = 0.02UA/a3, accordingly
no complete dewetting of its center is observed. Moreover,
this polymer can exist inside the metastable liquid at T =
1.3UA/kB, and does not produce a nucleus of the vapor phase
as the polymer of length M = 176 does at the same conditions.
This is also consistent with the absence of the liquid interface
around this polymer.

5. Snake-hatching model of the cold swelling
transition

Here we present simplified quantitative considerations which
may explain the first-order nature of the cold swelling
transition. As we can see from the snapshots of figure 10(d),
the unfolding starts with one tail of the polymer trying
to penetrate the solvent through the phase boundary, much
as a snake hatches from an egg. We assume that the
enthalpy change in the cold swelling transition ��h is largely
associated with the formation of the phase boundary, which
scaled with the polymer length as M2/3. If this is true the
change in energy per monomer in the cold swelling transition
must decrease with M as M−1/3. This indeed can be seen
from the graphs in figure 13(b), where one can see that
for T > Ts the energy of solvation per monomer �u for
M = 88 goes above the energy for M = 188, while for
T < Ts these values coincide. Since ��h < 0 the entropy
of the swollen state must be smaller than the entropy of
the collapsed state. The only explanation of this is that the
solvent around the solvated tail of the polymer has less entropy,
because monomers occupy the free spaces between the solvent
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Figure 16. Disappearance of complete dewetting for short polymers
of M = 88 and 44 shown by the density profiles of hard sphere
monomers (Hs, solid lines) and Jagla particles (Ja, dashed lines) as
functions of the distance r from the center of mass of the polymer for
different T and P.

particles, restricting the number of possible configurations
available for the solvent particles. This reduction of the entropy
obviously is proportional to the length of solvated tail of the
polymer Ms. The value of this entropy s0 < 0 per monomer
must be of the order of magnitude of ��s. We neglect the
entropy of the polymer chain in the solvent and in the globule.
In this approximation, the excess Gibbs potential of the system
is

�G = 4πr 2
gγ − T s0 Ms, (4)

where γ is surface tension and rg is the radius of the globule,
which can be found from the number of monomers remaining
in the globule Mg = M − Ms from the equation 4πr 3

g/3 =
Mg/ρ0, where ρ0 is the density of the monomers in the globule.
Finally, we can write

�G(y) = G0[(1 − y)2/3 + ay], (5)

where y = Ms/M is the fraction of the monomers in the
dissolved state and G0 = �G(0) is the Gibbs potential of the
collapsed state:

G0 = γ (36π M2/ρ2
0 )

1/3, (6)

and
a = −T s0(Mρ2

0/36π)1/3/γ > 0. (7)

Figure 17 shows the behavior of �G(y) as function of
y for several different temperatures close to Ts. The fully
collapsed state corresponds to y = 0, the fully swollen state
corresponds to y = 1. The two states are separated by the
free energy barrier corresponding to the maximum of the Gibbs
potential. The condition of equilibrium T = Ts corresponds to
equal Gibbs potentials of these states: �G(0) = �G(1), from
where a = 1 and

Ts = −γ (Mρ2
0/36π)−1/3/s0. (8)

We can see that Ts decreases with polymer size as M−1/3,
which agrees very well with our numerical results (figure 2(c)).

Figure 17. Normalized Gibbs potential, �G/G0, as a function of the
fraction of monomers, y = Ms/M , in the solvated part of the
polymer in the hatching snake model for several different
temperatures near the cold swelling temperature, Ts. At T = Ts (bold
line) the Gibbs potential of swollen and collapsed states are equal to
G0.

Moreover, if we use ρ0 = 0.43, γ = 0.42, M = 176,
s0 = ��s = −0.9, we get Ts = 0.7, which is not very far
away from reality, given the crudeness of our approximations.
Moreover, equation (5) predicts the correct behavior of the
stability of the swollen and collapsed states with temperature,
and also the increase in the Gibbs potential energy barrier
4/27G0 separating the two states at equilibrium with the length
of the polymer. To demonstrate the increase of Ts with pressure
using equation (8) we need to know the behavior of s0 and γ

with pressure; this will be the subject of future studies.
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