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5 Service de Physique Thkorique, CEN Saclay, 91 191 Gif-sur-Yvette, France 

Received 1 1  March 1985 

Abstract. We introduce and discuss a new model in which the growth sites are driven with 
a power law, rn, away from the original seed. The concept of ‘forgotten’ growth sites is 
developed. We find that the fraction of forgotten growth sites, the ‘order parametes’ for 
this problem, is zero for a below a critical value (2, = 1 ,  and increases sharply for a > a, 
with a critical exponent /3 - 3  in two dimensions. 

Growth models have been studied intensely in the past year mainly because of the 
following puzzle: they seem to show scaling behaviour with critical exponents like 
equilibrium critical phenomena, but they are irreversible, non-equilibrium phenomena 
in which the history of each configuration makes it impossible to properly write down 
a partition function. We are therefore, at the present, confined to study the characteris- 
tics of growth models by analysing simple models and for instance to see if by tuning 
a parameter the behaviour can be changed. 

A prominent example for a growth model has been diffusion-limited aggregation, 
DLA (Witten and Sander 1981). The sites of a cluster where growth takes place are 
chosen by a diffusion process. Although in this model any site of the surface (with the 
exception of tiny holes in the cluster) could potentially be chosen by the diffusion 
process, in practice the growth only takes place at the outer shells of the cluster and 
the interior growth sites seem completely ‘forgotten’ by the growth mechanism. The 
result is so dramatic that asymptotically nearly all sites in the interior remain unoccupied 
and the result is a fractal cluster. 

In order to sharpen this concept of forgotten growth sites, we shall introduce a 
new model where they appear quite naturally and where the ‘forgotten interior’ can 
be quantitatively and precisely measured. Our model is called the shell model because 
it explicitly contains a growth shell driven by a power law from the original seed. 

Let us consider a square lattice. Suppose we grow a percolation cluster as follows: 
at time t = 1, we occupy the site at the origin, which represents the seed of the cluster; 
the four nearest-neighbour sites are G (‘growth’) sites. Next choose one of the G sites 
randomly. With probability p occupy it and with probability 1 - p  block it forever. If 
it is occupied, we have formed a two-site cluster with six G sites. If it is blocked, we 
choose one of the remaining three G sites and continue the process until a two-site 
cluster is formed or until all G sites are blocked. If all G sites are blocked, the cluster 
dies and we start a new run. If a two-site cluster is formed, we then choose one of its 
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G sites, but not with the same probability to each. Rather, we choose the next G site 
according to the probability 

re  
P ( r ) = -  

Zr” 

where r is the Pythagorean distance of the G site from the origin and the sum runs 
over all G sites. 

If a = 0, the G site is chosen randomly and the model reduces to a method similar 
to that proposed by Alexandrowicz (1980) to construct percolation clusters (Family 
and Vicsek 1985, Bunde et a1 1984). If a > 0, then G sites at larger distance from the 
seed are preferred, while for a < 0 G sites close to the seed are preferred. The chosen 
G site will be occupied or blocked with probabilities p or 1-p and the process is 
continued. For a positive, the cluster has a seed that repels new sites and drives the 
cluster outward, leaving many ‘forgotten’ G sites close to the centre (figure l (a ) ) .  For 
a < O  the seed attracts new sites and G sites close to the centre are rare for large 
clusters (figure l ( b ) ) .  The case a > 0 has the feature in common with diffusion-limited 
aggregation (DLA) that the mean distance from the origin of the sites at which growth 
(‘aggregation’) takes place increases in time; see, e.g., Plischke and Racz (1984), Meakin 
and Sander (1984), Meakin et a1 (1985). This model is also similar in some respects 
to the butterfly model of Bunde er a1 (1984) in which the G sites are imagined to be 
occupied one after another by a butterfly that randomly flies from one G site to another. 
In the model of Bunde et al, P is a function of the previous butterfly position, while 
in the present model P is a function only of the distance of the G sites from the origin 
of growth. For the case cy = 0, P = 1/ G. One could imagine that both models are 
created by a charged butterfly that for the shell model is simply attracted to ( a  < 0) 
or repelled from ( a  > 0) the origin by a central electrical field. For the model of Bunde 
et al, each G site is itself also charged, and attracts or repels the butterfly with a force 
that depends on the distance to the G site. 

Figure 1. Characteristic clusters for (a)  P ( r ) -  r4 (size 720) and ( b )  P (  r )  - r - I2  (size 1200). 
p is chosen to be the percolation threshold pc  = 0.592 77. The occupied sites are white sites 
surrounded by the closed line which is the borderline of the cluster. Outside this borderline 
there are the blocked sites (crosses) and the growth sites (black dots). The origin is marked. 
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Static properties. Some of the geometrical properties of the large clusters are reflected 
in the fractal dimension df, which governs how the cluster mass s increases with its 
radius of gyration 

s - rdf.  (2) 

Let us first consider p = I ,  i.e., no blocked sites. If a = 0, our model reduces to the 
much-studied Eden model. If a = -00, the shells around the seed are successively 
filled and the growth process resembles the Leath method for p = 1 (Leath 1976). If 
a > 0 but is still finite, clusters are grown that take the form of a stick for small sizes 
and a ‘club’ for larger sizes. In all cases the dimension of the clusters is df = d. For 
a = 00, a one-dimensional chain is formed. 

In general, for a < CO the clusters stop growing if and only if all G sites are exhausted. 
These finite clusters that are not growing anymore are just clusters of random percolation 
at the probability p and df= $. Henceforth we will choose p = pc.  

Kinetic properties. In addition to the static properties of this growth process, we 
consider the kinetic properties. Information about the growth process is obtained from 
the G sites. The G sites themselves form a fractal? with a fractal dimension dc given 
by 

G - rdG - s d G I d f .  (3)  

For a range of a values between -12 and +12, we have calculated G (for p = p c  and 
s up to 4000); we averaged over typically IOs configurations. We find dG/df= 
0.40 f 0.02, irrespective of a. Thus we find that the overall growth mechanics of what 
are ultimately percolation clusters does not depend sensitively on the ‘central field’ 
and is the same for both repulsive and attractive ‘forces’. This finding is in sharp 
contrast to the butterfly in a non-central field (Bunde et a1 1984, Family and Vicsek 
1985), for which dG/df has one value (0.40) for a s 1 and a completely different value 
(-0.6) for a 2 2. In addition to the standard ‘static’ method of determining the fractal 
dimension by calculating the mass as a function of the radius, we have two kinetic 
ways to determine df for the growth process. 

(i) At p c  the fraction N,,, of clusters containing at least s sites is not constant for 
large s (as it is for p > p c )  but decays to zero with a power law 

(4) 
(ii) As noted above, the cluster growth arises from the trajectory of a butterfly that 

always moves from G site to G site, creating cluster sites each time it touches a G 
site subject only to the condition (1). The time t is increased by one unit whenever 
the butterfly visits a new G site; hence s = tp and 

N,,, - s - ‘ + ~ / ~ , .  

( r 2 ) -  t 2 I d f .  ( 5 )  

We have used both methods to calculate df for - 1 2 s  a S + 1 2  and have always 
obtained df-% the value for percolation, irrespective of a. In order to get a more 
microscopic insight into the growth process we have calculated the radial distribution 
function of the growth sites. Figure 2 shows, for several different cluster sizes s, the 

t Note that the fractal formed by the G sites is a ‘volatile fractal’, a term proposed by Herrmann and Stanley 
(1984) for fractals whose identity changes with time. Two other familiar volatile fractals are cluster-cluster 
aggregation, where the cluster identity changes in time, and the blobs (of multiply connected bonds) in a 
cluster backbone, whose identity changes not with time but with system size (Herrmann and Stanley 1984). 
The scaling functions for volatile fractals have power law singularities. 
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r 

Figure 2. N ( r ,  s) for P ( r )  - r-" (peaked functions) and P ( r )  - rI2 (monotonic functions) 
for s=800 (. * * .), s=2000  (---) and s =4OOO (-). 

dependence on r of N (  r, s), the (averaged) number of G sites of an s cluster at distance 
r from the seed. Shown are results for strongly attracting (a = -12) and strongly 
repulsive seeds (a = + 12). For a = - 12 the distribution function shows a narrow peak 
that broadens with increasing cluster size; within a certain core around the seed there 
exist practically no G sites. The radius of the core as well as the position of the peak 
increases with s. For a = +12, N ( r ,  s) decays monotonically and becomes, at a given 
value of r, independent of s for large s t .  For large s and r<< ~ " ~ f  the distribution 
function decays with the power law 

N (  r, s)  - rdc-'  ( 6 )  

where dG - 1 = -a independent of s. 
For all values of a considered here we have also calculated the mean P and the 

variance A of the positions of the G sites. We found that both also scale with the 
cluster radius. This finding is in agreement with the results from other percolation 
growth processes (Stanley et al 1984, Bunde et a1 1984, Family and Vicsek 1985), is 
in contrast to the case of the Eden model where the width increases less quickly than 
the radius (Jullien and Botet 1984, Dhar 1984), and should be compared with the case 
of DLA where this question has not yet been satisfactorily settled (Plischke and Racz 
1984, Meakin and Sander 1984). We also confirmed that N(r ,  s) obeys scaling in the 
two active parameters r and s, according to 

N ( r ,  s) = S(dc-l)'dlf~(rS-'/'r). (7) 
Figure 3 shows two representative examples a = f 12. The scaling functions describe 
the two different typical situations. If a = 12 most of the G sites are 'forgotten' and 
do not actively participate in the growth process, while for a = - 12 practically all G 
sites are either active or become active in the course of the cluster growth. We have 
varied a gradually from -12 to +12 and calculated the scaled distribution function 
f a ( x ) .  The result is shown in figure 4, in the upper three curves. The peak at r = 0, 
characteristic of the forgotten G sites, is present for a > 1, and is absent for a s 1. 

t This part of the distribution function describes the 'forgotten' G sites that do not actively participate in 
the growth process. 
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Figure 3. The number N(r ,  s) of G sites of a primary s-site cluster at a distance r from 
the seed scaled such that all curves collapse on a single curve (s = 800: A; s = 2000: 0 ;  
s=4OOO: U). ( a )  P ( r ) - r - ” ,  ( b )  P ( r ) - r ” .  

We have seen in figure 2 that for a = 12 a large fraction of the G sites remain close 
to the origin. These forgotten growth sites are essentially never visited again by the 
butterfly since N(r ,  s) becomes independent of s for large s. As a consequence, the 
functional form of the scaling function j, is not universal anymore as seen in figure 
4 though dG is universal. This behaviour is opposed to the behaviour usually found 
in critical phenomena (Betts el a1 1971). To better describe the G sites, we introduce 
the new function 

r p N (  r, s) 
Hr“N( r, s)’ 

B(r, s) = 

While N(r ,  s) is the number of G sites present at distance r, 9 ( r ,  s) is the probability 
that the butterfly actually visits such a G site (Plischke and Racz 1984), i.e., B(r, s) 
may be thought of as the radial distribution function for the ‘active’ G sites, and a 
suitable quantity for growth models with forgotten G sites. We find that B(r, s) also 
scales in s and r similar to N(r ,  s) 

B(r, s) = s - l ’dfgu(rs - l /d f ) .  (9) 

In the three lower curves of figure 4, g, is shown for different values of a. We see that 
the form of the scaling function g, does not change with a: it is universal. This is in 
contrast to the shape of the scaling function f, of N(r ,  s), which is shown also in 
figure 4 (upper curves). The physical difference between N(r ,  s) and B(r, s) is just 
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Figure 4. The scaling functions f , ( x )  (upper curves) and g,(x) (lower curves) of distribu- 
tions of growth sites and active growth sites respectively, for a = 1 (. . . .), a = 2 ( - - - )  and 
a = 8  (-). 

the forgotten G sites and the fact that for increasing a > 0 we expect more and more 
forgotten G sites to apparently account for the development of the maximum of N (  r, s)  
at the origin (or its scaling function in figure 4). This maximum seems to disappear 
at a,= 1. 

The value a, = 1, Le., the critical Q above which forgotten growth sites appear and 
below which forgotten growth sites are irrelevant can be obtained from the following 
argument. Our growth mechanism can be viewed as the growth of an Eden model 
(with the condition of equation (1 ) )  not on a Euclidean lattice but on a percolation 
cluster at pc.  When will the forgotten G sites appear? Suppose we start with a cluster 
of radius R with a given homogeneous density C$ of forgotten G sites; i.e., C$ is the 
number of forgotten G sites divided by the number of occupied sites. Pick any G site 
near the origin, i.e., r ̂ I 1 , and ask for the probability that it will chosen by the butterfly 
at the next time step. By equation (1) this probability will be of the order of R-df+ ' -a .  
To see this, note that the sum over all G sites in (l) ,  the ones that contribute most 
(for a > 0) are those on the surface (fractal cut) of the cluster: 

Suppose that at each time step we create with a fixed probability C$p new G sites 
that later will be forgotten. In order that the number of forgotten G sites decreases 
one must compensate via equation (10) for this creation of new forgotten G sites. The 
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butterfly creates new G sites by picking a chosen G site with a probability at least of 
the order of l / R d f ,  since the probability of picking a specific G site is proportional 
to the inverse of the volume R d f .  Equating both probabilities gives the marginal value 
for a: a,= 1. 

From the scaling function gQ of figure 4 we see another interesting fact. The 
functional form of the curves gQ(x) seems identical for all a, except for a shift in the 
position of maximum x N  if a > 1. How do we understand this remarkable feature? 
Let us for a given s consider two active G sites, one in the small r tail and one in the 
large r tail of g,. The difference in probability to visit these G sites can be calculated 
according to equation (1 )  and one finds that it does not depend on a. This explains 
why the width of the function g, is the same for all a. It is very surprising to find 
that the maximum x N  (a) scales like a power law 

x N ( a )  - x N ( a c )  - (a - (11) 

This has the physical implication that the fraction of sites fp of the cluster that are 
forgotten G sites scales within the accuracy of our data as 

fp - (a - a c ) 2 / 3  (12) 

because the maximum x N  described in equation (1 1) is proportional to the radius of 
the cluster as seen in figure 4. 

In conclusion, by driving the active growth sites away from the original seed with 
a power law rQ we find, at a,= 1, the onset to a different behaviour. We investigate 
intermediate stages for a > 1 ; the clusters (percolation clusters at p,)  are not grown 
completely but a finite fraction 6 of forgotten growth sites is ‘left behind’. However 
the overall fractal dimension + e v e n  the fractal dimension of growth sites &-remains 
unchanged. The fraction fp of forgotten growth sites increases with a - a, with a power 
law as if fp were the order parameter of a critical behaviour at a, = 1. 

We thank D Stauffer and A Margolina for helpful comments. 
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