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Abstract. The question of transport in a random two-component mixture is addressed. To 
this end, two models are precisely formulated that effectively extend to two-component 
mixtures the de Gennes ant model of one-component systems. We develop and test a 
scaling theory, and we solve some of the problems associated with the limit where one of 
the components is superconducting. Our work provides the first practical realisation of 
the termite model of a random superconducting network, which performs a normal walk 
in the normal regions of the material but performs a new and unique form of random walk 
in the superconducting regions. We find that the divergence of the electrical conductivity 
at the percolation threshold can be described by this random walk, and that the critical 
exponent s is given by s = 1.3 f 0.1 in d = 2. If we perturb away from the pure superconduct- 
ing limit, we find that the electrical properties can still be described by the random walk 
model, with a crossover exponent I$ = 0.4 (d = 2). Moreover, we find that the diffusion 
constant in this region is described by a scaling form, so that data can be made to collapse 
upon a single curve whose form is governed by the exponents s and I$. 

The problem of diffusion and transport in random materials has been the subject of 
considerable recent experimental and theoretical interest (de Gennes 1976, Alexander 
and Orbach 1982, Gefen et al 1983, Ben-Avraham and Havlin 1982, Laibowitz and 
Gefen 1984). This arises in part because of the fundamental scientific questions that 
arise when seeking to describe how the laws of physics are modified for such complex 
materials, and in part because of the important realisations in nature of such materials 
ranging from porous rock to the viscosity of gels (Deutscher et a1 1983, Jouhier et a1 
1983, Stanley and Coniglio 1984). 

One prototype system that has been the object of considerable recent investigation 
is the random resistor network (RRN). In its simplest ‘one-component’ form, one 
imagines a lattice each of whose bonds is occupied with probability p by a resistor of 
resistance R As p approaches the percolation threshold pc from above, the conductivity 
X of the RRN approaches zero as X - (-“” where ( is the correlation length. Conven- 
tionally, one approaches the RRN using techniques based on Kirchoffs laws, which of 
course apply to the RRN (as well as to the case p = 1).  A tremendous conceptual 
advance, which affected our way of thinking about the RRN (and also our way of 
computing), occurred in 1976 when de Gennes recognised (de Gennes 1976) that one 
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could equally think of the RRN as a diffusion problem, since the Einstein relation 
connecting diffusion to resistivity applies regardless of whether or not the system is 
random (Scher and Lax 1973). His term ‘ant in a labyrinth’ to describe the random 
walker on a random substrate has led to many new results for the R R N  (Alexander 
and Orbach 1982, Gefen et a1 1983, Ben-Avraham and Havlin 1982, Laibowitz and 
Gefen 1984, Deutscher et a1 1983, Jouhier et a1 1983, Straley 1977, Rammal and 
Toulouse 1983). 

More recently, interest has focussed on an opposite extreme of one-component 
network, the random superconducting network (RSN), (de Gennes 1980, Coniglio and 
Stanley 1984, Herrmann et a1 1984) in large part due to its applications in materials 
science and polymer science; e.g., the RSN may describe the shear viscosity of a gel 
near the gel threshold pc and also describes the DC dielectric constant of a metal- 
insulator mixture (Wilkinson et a1 1983). In contrast with the RRN, the conductivity 
diverges to infinity as p c  is approached. 

‘Real’ composite materials are often in the intermediate zone between the extremes 
of the R R N  and the RSN. For this reason, one can speak of a general two-component 
network where bonds have conductance (+A with probability p and conductance uB 
with probability 1 - p  (Efros and Shklovskii 1976, Bergman and Imry 1977, Sen 1981). 
Clearly the R R N  is recovered in the limit u B + O ,  and the RSN in the limit (+A+ CO (figure 
l (a ) ) .  

Here we propose a novel approach to the two-component network in which the 
traditional Kirchoff law approach is replaced by a random walker obeying certain 
rules (figure l (b)) .  In a sense, we replace the de Gennes ant (de Gennes 1976) and 
termite (de Gennes 1980, Coniglio and Stanley 1984) by a more general sort of ‘hybrid 
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Figure 2. Schematic illustration of the four termite 
models considered in this paper: for definitions see 
table 1. ( a )  ‘stopwatch’ termite model, ( b )  ‘skating’ 
termite model, (c) ‘Boston’ termite I ,  and ( d )  ‘Bos- 
ton’ termite 2 (see also table I ) .  
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Figure 1. ( a )  The traditional Kirchoff law approach 
to the random two-component mixture with conduc- 
tivity oA and uB is replaced by a random walker 
which obeys certain rules discussed in the text. ( b )  
In the two extreme limits, this model properly 
describes the de Gennes ant [uA = 1, uB = 01 and the 
de Gennes termite [uA = 03, us = I]. 
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animal’ whose rules of motion reduce to those of the ant and termite at the two 
appropriate limits. Accordingly, the goal is to find a set of rules whereby a random 
walker in the two-component composite reproduces the desired behaviour. 

The basic idea of any termite model is different diffusion rules on and off the 
superconducting cluster (de Gennes 1980). A simple and very tractable model is the 
so-called ‘stopwatch’ termite: the clock is stopped whenever the termite walks on a 
superconducting cluster. Since this is the only effect of the cluster’s presence, the trace 
(or ‘trail’) of the stopwatch termite is the same as the trace of a simple random walk?. 
We found, by simulation and by analytic arguments, that D ( p )  = 1 / (  1 - p ) .  Thus a 
severe drawback is that the stopwatch termite has no singular behaviour at pc.  

A second early model for which we have done calculations is the ‘skating’ termite 
(Coniglio and Stanley 1983). Here the termite proceeds with a ballistic trajectory 
whenever it enters a superconducting cluster (it ‘skates’). We found that the skating 
termite, like the stopwatch termite, has no singular behaviour at p c  except in d = 1. Table 
1 and figure 2 are designed to clarify the relations between the various termite models 
we have studied. In what follows, we formulate two new models. The first is for the 
general case of a two-component composite material while the second is for the 
behaviour in the vicinity of the RSN limit. Calculations presented below for both 
models provide the first numerical results for the superconductivity exponent in terms 
of the properties of a random walk. Our work has the virtue that only time ensemble 
averages are considered. 

Table 1. The four termite models for which we have carried out simulations. 

Critical 
Model Definition at pc? 

Stopwatch termite Clock stops when on superconducting cluster; N o  
trail is identical to frail of random walk 

Skating termite Termite has ballistic trajectory when on cluster. No 
Boston termite 1 Similar to stopwatch termite, but trail is not a ran- Yes 

dom walk since next step is weighted in favour of 
superconducting site. 
Similar to 1, except clock is tumed off when 
termite is on  a cluster. 

Boston termite 2 Yes 

Boston termite 1 $. Physically speaking, we expect that a region of low resistance 
should correspond to a region where the walker (‘termite’) moves faster. For example, 
in the de Gennes ant problem (the RRN limit of our general model), the walker does 
not move off the cluster since R = CO there. Guided by these physical considerations, 
we first set up a time scale precisely (‘step 1’). From the Einstein relation, we have 
(+A - DA - e2/ rA, where DA is the diffusion constant in the region A, e the mean free 
path, and rA the characteristic time to travel a distance e.  The same reasoning applies 
to species B, so uB - DB - e’/ rB and hence 

TA/ r B  = (+B/ (+A* ( l a )  
The next and final step in formulating our general model is to identify the physically 

t We shall see below that the stopwatch termite is identical to a special case of our ‘Boston termite 1’. 
$This model was introduced in footnote 6 of Coniglio and Stanley (1984). 
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appropriate transition rate ('step 2')t. To accomplish this, we make the ansatzS that 
I l i =  k7;' ( i =  1 , 2 , .  . . , z, where z is the coordination number), where IIi is the 
probability that the termite takes a step to its ith nearest neighbour, 77' = uA or aB, 
depending if site i is species A or species B, and k is a normaiisation constant. Since 
H f = , I I i  = 1, we have 

ITi = T ~ ' / & T T ' .  (1b) 

In one unit of time, the walker takes fA = TA' steps if he is on a large cluster of A sites 
and fB = 7;' steps if he is on a large cluster of B sites. The total elapsed time, 
t = N A T A +  N B T B ,  is related to the mean-square displacement and the diffusion constant 
by 

( r 2 ) - D ( f A , f B , P ) t ,  P a )  

where NA and NB are the total number of steps in A and B sites. 

RSN and R R N  limits. The limit fA+ CO with N,J fA non-zero, fB = 1, gives, for t large, 
the long-time behaviour of a walk that covers uniformly an A cluster before stepping 
out of it. We propose to use this walk to describe the critical behaviour of the RSN. 
In the RSN limit we have 

since 2- D by the Einstein relation. 
The RRN, on the other hand, is described by the limit fB+ 0 with fA = 1 , and 

lim D(l,fB, P) - ( P  - - P C Y ,  (2c) 
fB- 'o  

where p is the conductivity exponent. 

General case. If we choose fA and fB both finite and different from zero, then we 
describe the general situation of a particle diffusing in a random composite medium. 
The basic object of interest is the conductivity Z(aA, uB, E ) ,  where E = l p  -pcl /pc.  If 
we increase both bond conductances by the factor A, we find 

(3a )  Z(AaA, A a B ,  E )  = A Z ( a A ,  us, E ) .  

Choosing A = l/aA, we find 

Z(UA, (JB, E )  u~z (1 ,  UB/UA, E ) .  ( 3 b )  

t A model with step 1 only (no step 2) is called the stopwatch termite (see discussion in text). 
$ A detailed justification of the ansatz is given in Hong er a1 (1984). One heuristic argument (F Leyvraz, 
private communication) is the following. The macroscopic equations for the current and potential distribution 
in an arbitrary inhomogeneous medium having conductivity o(x) are: 

O = d i v j = d i v f a ( x ) V ~ ] = c r ( x ) A + + V a ( x )  .V+(x) .  

The function +(x)  can therefore be understood as the stationary state of the equation &$/at= 
o(x)Ac$ +Vu(x) V&(x).  This equation, however, exactly describes a diffusion with local drift Vo(x)  and 
local diffusion constant a ( x ) .  The appearance of the drift term is responsible for the relative probabilities 
going to the high or low conductivity region when starting from an interface site, as introduced in both 
models 1 and 2 of this paper. 
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At E = 0, we expect a power law singularity, (Straley 1976) 
U g A ,  ug, 0) - u A ( u B / u A ) "  ( P  = P A ,  

where U is a critical exponent. For / E / < <  1, this must be modified by a scaling function, 

Z ( u A ,  uB, E )  -'A(uB/uA)Uf[E(uA/uB)'l ( P  f P c ) ,  (4b) 
where 4 is a second exponent. Below we shall express the new exponents 4 and U 
in terms of conductivity exponents p and s. 

Termite limit. (uB = 1, U,+ m). In this limit, we know that 8- E-' so we assume 
f ( x )  - x-', and have 

- ui-uui[&((TA/gB)']-S. (4c) 
In order that there should be no dependence on U,, we must have ( 1  - u ) / s  = 4. 

Ant limit. (U,= 1, uB+O). Since 8- E * ,  we assume f ( x ) - x p .  In order that the uB 
dependence should vanish, we must have 4 = u / p .  We have derived two equations 
for the two unknowns U and 4, in terms of pand  s, from which we obtain U = p / ( p  + s) 
and ~5 = l /(p + s). 

Since 8 - 0, it follows from (4b) that D will be described by a scaling equation 
of the form 

( 5 a )  -fh-'fi H* ( ( fA/fB) ' )* 

Termite limit. ( fA+ 00, fB = 1). For fixed p below pc,  D will converge to the constant 
D, for fA+ CO. Hence H - ( x )  - x-' ( x  >> 1). For fixed p above pc ,  Z is governed by 
the infinite network. Thus we expect 0-fA so that H + ( x ) - x p  ( x  >> 1). In d =2,  
duality argument (Straley 1977) yields p = s. Thus we can show that for all x (Hong 
et al 1984), 

h + ( x )  = l / h - ( x ) .  (5b) 
where h , ( x )  = H , ( x ) / H , ( O ) .  

Ant limit. ( f A =  1, f B + O ) .  In this limit, we might allow for a different functional form 
for 0, 

= fi- 'fiA+ ( ( f d f B )  ' 1. ( 5 c )  

However, the same scaling argument used above for the termite limit leads to the same 
asymptotic functional behaviour for A , ( x ) ,  A + ( x )  - x p  and A - ( x )  - X-' .  Thus we 
expect the same reciprocal relation ( 5 b )  for ant limit a + ( x )  = l / u - ( x ) ,  with a , ( x )  = 
A , ( x ) / A , ( O ) .  The intriguing result that a , ( x ) = h , ( x )  is discussed in Hong et a1 
(1984). 

Boston termite 2. Model 2 is motivated in part by our intuitive understanding of a 
superconducting cluster, namely that all the superconducting cluster sites are short 
circuited. Thus the walker will be with the same probability on each perimeter site of 
the cluster, and will perform a simple random walk on the normal sites. More precisely, 
when the walker is on a normal cluster, it chooses at random any direction and proceeds 
to this neighbour regardless of whether it is a normal site or a superconducting site, 
the corresponding step frequency fN = 1. When the walker is on a superconducting 
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site, it chooses at random in which direction its next attempt to move to a nearest- 
neighbour site will be. (a) If the attempted site belongs to a superconducting cluster, 
the walker steps. (b) If the attempted site belongs to a normal cluster, then the walker 
can either step or wait, with probabilities IIsN and 1 -IIsN respectively. The time is 
not counted when the walker is on a superconducting cluster. The limit nsN+ 1 
describes the motion of the termite when the superconducting sites have all been short 
circuited?. The number of steps spent on a superconducting cluster in unit time is 
roughly given by Ns - (1  - nSN)-', identical to fs. For this model, the scaling relation 
(3) also holds near the superconducting limit N;' -&' + 0, f& = 1. Clearly fs/fN 
corresponds to f in model 1 and we will use the same notation f in the following to 
simplify the discussion. 

Direct simulation. We have succeeded in direct computer simulations of both model 
1 and model 2 .  The simulation was carried out on square lattice of size 800 x 800 
(model 1) and of size 1000 x 1000 (model 2). The random AB lattice was generated 
by choosing an A site with probability p ,  and a B site with probability 1 - p .  The 
starting points for the walker were chosen randomly. Then using the Monte Carlo 
method walks were simulated according to the rules discussed above. For each walk 
we calculated the square of the Pythagorean distance, r2 ,  as a function of time t. To 
obtain the mean square distance (r'), we averaged over typically 1000 cluster configur- 
ations (sometimes we made more than one walk on each configuration). 

The asymptotic regime of the walk (where ( r 2 ( t ) ) =  or) was reached after about 
400 time steps in model 1 and 200 time steps in model 2.  The corresponding number 
of actual moves of the walker was typically l/f times larger. We have calculated ( r2( t ) )  
for t up to 2000 in model 1 and 1000 in model 2 and varied f from 10 up to 20 000 
(for p close to p J .  To put the scaling assumption (3) to a first test, we have calculated 
D at p = p c  = 0.592 77 (Gebele 1984) as a function off:  From duality arguments, valid 
for d = 2  (Straley 1977), it follows that p = s and therefore U = 0.5. Our results, 
U = 0.5 f 0.02 (see figure 3), confirm this value. By this, we also confirm indirectly the 
duality argument. 

- 
10' 102 103 

f 

Figure 3. Dependence on f = f A / f s  of the diffusion constant D ( p ,  f )  at the percolation 
threshold for model 1 and model 2. The slope of the curve, U =0.5, is expected from ( 3 )  
by a duality argument. 

+ This case was discussed at the end of  footnote 6 in Coniglio and Stanley (1984). 
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From (4) we expect data collapsing, when D / (  H*(O)f”’) is plotted against ( p  -p,lf’ 
(figure 4), with 4 = ( p  + s)-’ = ( 2 s ) - ’ .  We have checked this prediction as well as the 
reciprocal relation (56) by varying 4 and found complete data collapsing for 4 = 
0.40 i 0.03 which then gives for the superconductivity exponent s = 1.3 f 0.1. This value 
is in agreement with the widely accepted value for s (Zabolitsky 1984, Herrmann et 
a1 1984, Hong et a1 1984, Lobb and Frank 1984). The scaling functions behave 
identically in both models, which shows clearly that both models belong to the same 
universality class?. 

In order to determine the diffusion constant in the superconductivity limit at constant 
p - p c  we have studied D( 1, f, p )  forf up to 20 000 and performed the final extrapolation 
to D( 1, a, p )  using the scaling function of figure 2. Our findings for D( l ,m,  p )  for 
both models are shown in figure 5 .  The slope again is close to the accepted value s = 1.3. 

I I I I I I I I I  
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i p  -pc)  f + 

IO+ lo-’ 
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Figure 4. Dependence of the scnled variables Figure 5. Diffusion constant D( l , A  p )  of the termite 
D/H,(O)f”* upon ~ f ~ .  The fact that the data for limit (f+a) is plotted against E below the percola- 
several values of f ‘collapse’ on the same curve tion threshold. Since D ( I , a , p )  is proportional to 
supports the scaling relation (3 ) .  The best data col- the bulk conductivity Z, the slope gives s (we find 
lapsing is found for the choice s = 1.3. Scaling func- s = 1.3).  
tions above and below pc  are related by reciprocal 
relation (see ( 5 ) ) .  

In summary, we have addressed the question of transport in a random two- 
component mixture. We have found that a simple random walk, with suitably chosen 
rules, is sufficient to describe the rich physics of this problem. We have made extensive 
simulations of two different specific models, and obtained results in agreement with 
those obtained from conventional methods. After this work was completed, we learned 
of an approach (Adler et al 1985) for the RSN limit, which is quite similar to our 
‘Boston termite 2’ model in the limit f+ 03; model 2 is of course more general in that 
it describes the crossouer from the pure RNS limit to the general case of mixed 
conductors. 

We wish to thank A Aharony, Z Djordjevic, S Havlin, H J Herrmann, K Kang, F 
Leyvraz, I Majid, and D Stauffer for helpful discussions. AB acknowledges support 
from the Deutsche Forschungsgemeinschaft. 
t The reason behind this is that N A ~ A /  N,T, in model 1 is finite. Empirically we found that this value is 
close to p/(  1 - p ) .  
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