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Avalanches in the Lung: A Statistical Mechanical Model
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We study a statistical mechanical model for the dynamics of lung inflation which incorporates recent
experimental observations on the opening of individual airways by a cascade or avalanche mechanism.
Using an exact mapping of the avalanche problem onto percolation on a Cayley tree, we analytically
derive the exponents describing the size distribution of the first avalanches and test the analytical
solution by numerical simulations. We find that the treelike structure of the airways, together with the
simplest assumptions concerning opening threshold pressures of each airway, is sufficient to explain the
existence of power-law distributions observed experimentally.

PACS numbers: 87.45.Bp, 05.40.+j, 05.45.+b

Recent interactions between physics and physiology
have resulted in advances in understanding some “sim-
pler” physiological systems [1]. In particular, considerable
progress has occurred in the general area of statistical me-
chanics and pulmonary physiology [2,3] due most likely to
the unique treelike connectivity of the airways [4].

During a forced exhalation, lungs deflate to very low
volumes, and many peripheral airways close up [5]. In
lung disease, closure occurs even during normal breath-
ing; the closed airways do not reopen for a significant
portion of the following inhalation [6]. As a consequence,
a large portion of the alveolar space can remain closed
during the entire breathing cycle leading to severe hy-
poventilation and an imbalance between ventilation and
perfusion. The process of opening a single airway is a
local and isolated phenomenon. However, the dynamics
of consecutive airway openings in the lung is a highly
cooperative process. There is recent evidence suggesting
that during inflation the resistance to airflow of the small
airways decreases in discrete jumps [7,8]. Thus airways
do not open individually, but in a sequence of bursts or
“avalanches” [9] involving many airways; both the size of
these jumps and the time intervals between jumps follow
power-law distributions [8]. In this paper, we argue that
the existence of power laws in lung inflation can arise di-
rectly from the treelike connectivity of the airways. We
observe that the dynamics of lung inflation can be usefully
described by a percolation problem on a Cayley tree, with
the inflated lung volume corresponding to a percolation
cluster. Using this exact mapping, we analytically derive
the exponents describing the size distribution of the first
avalanches, and test our results using simulations.

Morphological data [4] show that human (as well as
other mammalian) lungs constitute an asymmetric branch-
ing airway structure with ø35 generations. Complete
airway closure appears to occur only in the last ø10 14

generations [8], where the branching structure is largely
symmetric [4]. Accordingly, we model this part of the
airway tree as a binary Cayley tree with airway segments

that can be either closed or opened (Fig. 1). At time
t  0, all airways are assumed to be closed. Lung infla-
tion is simulated by applying an external pressure PE at the
root of the tree, and gradually increasing PE at a uniform
and slow rate. Airways are labeled si, jd with a genera-
tion number i si  0, . . . , Nd, where N is the order of the
tree (i  0 denotes the tree root), and a column number j

s j  0, . . . , 2i 2 1d. An opening threshold pressure Pij is
also assigned to each airway si, jd. Experiments on flex-
ible tube airway models [10] confirm that the opening of
a single airway is a dynamic process, with each airway
characterized by a critical pressure threshold such that if
PE exceeds this threshold, then the airway opens in a short
time, which is considered to be instantaneous [11]. Open-
ing of airway si, jd occurs whenever Pij is smaller than the
pressure in its parent.

FIG. 1. Schematic diagram of the airways represented by a
branching tree. The airways are labeled by a generation number
si  0, ..., Nd and a column number s j  0, ..., 2i 2 1d. An
opening threshold pressure 0 , Pij , 1 chosen from a uniform
distribution is also assigned to each airway.
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We assume that Pij is uniformly distributed between
0 and 1 [12], and allow PE to increase from 0 to 1 in
small increments. When PE first exceeds P00, the airway
s0, 0d opens and its pressure is set equal to PE. Next, the
two airways (1,0) and (1,1) are tested to see if they can
be opened with this value of PE —i.e., if PE . P10 and/
or PE . P11. If one or both conditions are met, then
the airways s1, 0d and/or s1, 1d are also opened. This
opening is then continued sequentially down the tree until
no airway is found with its Pij , PE.

Of particular interest is the fact that a small increase
in PE can lead to an “avalanche” in which many airways
open simultaneously. When the first avalanche stops, PE

is further incremented and pressures in the open airways
are updated. We iterate this process until all airways
open. The location and size of the next avalanche depends
on the distribution of Pij in the accessible region.

We do not treat the full problem analytically, but we
can obtain exact results for the distribution of the first
avalanche. At t  0, we increase PE until the first
avalanche occurs and we calculate its size s. Then we
restart the simulation with a new set of thresholds hPijj.

Before we consider two possible definitions of s, we
note that gas exchange in the lung occurs only in the
“opened” alveoli (the terminal units of the bronchial tree)
which are in communication with the trachea. For this
reason, in definition A, s denotes the number of alveoli,
defined as the number of elements in the last generation,
N , that become open. Motivated by percolation theory
[13,14], in definition B, s is the number of airways that
open following an increase of PE that opens at least one
airway. The physiological rationale for definition B is that
when the lung is deflated to low volumes, most airways
close. However, often there remains trapped air in the
alveoli. Thus, concerning gas exchange, it may not be
necessary that an avalanche reach the bottom of the tree
for it to connect alveoli with the trachea.

We study Pssd, the size distribution of first avalanches.
For definition A, PAssd shows a single power law
behavior with an exponent gA

 0.9 sø1.0d (Fig. 2). For
definition B the function PBssd has two regions (Fig. 2):
a first region with a steep power-law decay and a second
region with a moderate power-law decay, with a crossover
at a scale N ,

PBssd ,

(

s2gB
1 fs # Ng

s2gB
2 fs ¿ Ng

. (1)

The exponent gB
1  1.9 sø2.0d for the first regime, while

gB
2  0.9 sø1.0d for the second regime which extends

to sizes including all branches, i.e., almost to a size of
2N11 2 1.

We argue that for definition B, this problem can be
mapped onto the percolation problem for the Cayley tree
[14]. In the percolation problem, we occupy randomly
every branch of the tree with a probability p. Then,
starting from the root, we connect all occupied branches

FIG. 2. Double logarithmic plot of the avalanche size distri-
butions Pssd obtained by computer simulation on a Cayley tree
of 12 generations. Shown are data obtained for 108 realiza-
tions for each of the two avalanche size definitions discussed
in the text, definition A (closed circles) and definition B (open
circles). Also shown, for comparison, are the exact results ob-
tained using the generating function approach described in the
text. Again, both definitions are shown: definition A (solid
line) and definition B (dotted line).

that are neighbors of each other. Definition B concerns
the cluster of connected bonds that starts from the root.
The size of this cluster depends on the fraction p of
occupied bonds. As we approach a critical probability
pc, the typical size of a cluster can be characterized by the
styp , jp 2 pcj

21ys . Both s and pc can be calculated
exactly due to the branching nature of the tree: s 

1

2 and
pc 

1

2 [14]. In general, the size distribution of the finite
clusters in the infinite system obeys the scaling form [14]

Pssd  s2tfsssjp 2 pcjd , (2)

where t  3y2, and fsud  const for u ø 1 and fsu ¿

1d ! 0. To connect percolation theory to the lung
model, instead of occupying the branches randomly with
probability p, we assign a random number or pressure
threshold value to each airway. We then define a cluster
to be the set of airways that have a threshold smaller than
a predefined value p and are connected to the root. When
PE exceeds P00, we open all airways below the root which
have a threshold value smaller than P00.

If P00 is fixed and set equal to p, then this is exactly
the percolation problem on the Cayley tree, and the
distribution of the cluster sizes or avalanches is given by
(2). However, in our case, P00 is also a random variable.
Thus, in order to obtain the size distribution of the first
avalanche, we must integrate the cluster distribution over
the probability p from 0 to 1 with the result that

gB
1  t 1 s , (3)

which predicts gB
1  2, in agreement with the scaling

observed for s # N in Fig. 2.
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These calculations assume that the system size is
infinite. No avalanche with s , N can reach the bottom
of the tree, so the scaling behavior for s , N is that of
the infinite tree with an exponent gB

1  2. On the other
hand, avalanches of size s . N are affected by finite-size
effects, and indeed the data for s ¿ N indicate a different
exponent. Moreover, finite-size effects will always affect
the scaling behavior of PAssd, since every avalanche that
leads to the opening of one or more alveoli must open at
least N airways.

We next calculate the effect of finite N on the cluster
size distribution. Following the general theory of branch-
ing processes [15], we consider the generating function of
order N

g
A,B
N sp, xd ;

X̀

s0

P
A,B
N sp, sdxs, (4)

where P
A,B
N sp, sd give, for definitions A and B, the

probability that in a tree with N generations we have an
avalanche of size s for a given P00  p. Therefore,

P
A,B
N ssd 

Z 1

0
P

A,B
N sp, sddp . (5)

These generating functions satisfy the recursion relations

g
A,B
N11sp, xd  xufs1 2 pd 1 pg

A,B
N sp, xdg2,

g
A,B
0 sp, xd  x , (6)

where u  0 for definition A and u  1 for definition
B, g

A
N is a polynomial in x of degree 2N , and g

B
N

is a polynomial of degree 2N11 2 1. We obtain the
distribution functions PAssd and PBssd by numerical
integration of the coefficients of these polynomials with
respect to p  P00. The results for PAssd and PBssd
are shown in Fig. 2; note the good agreement between
simulations and theory, despite the fact that there are no
adjustable parameters in the calculation (the theoretical
line being determined solely by the value of N).

For N ! `, for any x , 1, the generating func-
tion g

B
N sp, xd approaches the limit gB

`sp, xd ;

f1 2 2ps1 2 pdx 2
p

1 2 4ps1 2 pdxgy2p2x, which
can be expanded in powers of x. On integrating the
coefficients of this expansion with respect to p, we obtain
PBssd  1yss2s 1 1d for s # N, which implies an
asymptotic exponent gB

1  2.
Next we consider definition A, and show that PAssd ,

1ys for large s, so that gA
 1. For large N and large s,

it follows from general theorems [15] that for p . 1y2,

PA
N sp, sd , s21

0 expf2Cssys0dgspdg ,

s0  s2pdN . (7)

Here s0 is the average avalanche size (number of open
alveoli) in the generation N, gs pd is a continuous function
of p for p , 1, and C is a positive number with a weak
dependence on sys0. For p #

1

2 , s0 decays exponentially
with N . Thus, for p #

1

2 , the coefficients P
A
N s p, sd for

large s become negligibly small and do not contribute to
the integral (5). In contrast, for p .

1

2 the probability of
a nonzero avalanche in definition A—which is equal to
the sum of all the P

A
N s p, sd with s $ 1—is finite when

N ! ` and equal to s2p 2 1dyp2. This quantity should
be used as a normalizing constant in the equation (7).
Integrating equation (7) with respect to p from 1

2 to 1 with
the help of the saddle point approximation, we find

PAssd ,
1

sN
s1 2 s21yN d ,

N ø s ø 2N , (8)
so gA

 1. If we expand Eq. (8) for small s, we find
PAssd , lnsyssN2d; hence we expect to find an effective
exponent that is smaller than the asymptotic value gA

2 

1, and indeed our simulations give gA
 0.9 (Fig. 2).

For very large s, comparable with 2N , the saddle point
approximation is no longer valid, and we observe (Fig. 2)
the “kink” near the end of the distribution [16]; Eq. (8)
also holds for definition B, so gB

2  1. Note that Eq. (8)
is valid for trees with any coordination number.

Having derived the above exponents analytically, we
next examine their “universality” by discussing how de-
viations from the assumptions made in the model may af-
fect the scaling exponents. (i) The first assumption (which
matters only for definition B) is that we neglect the fact
that in the lung the length , and the radius r , and hence
the volume of the airways, depend on the generation num-
ber i [4]. Previously, we modeled this generational de-
pendence such that ,i11  ,iy0.9 and ri11  riy0.86 [8],
where the scaling factors (0.9 and 0.86) arise from mor-
phological data [4]. This exponential dependence should
not affect the scaling behavior, an expectation we verified
by simulations. (ii) The second assumption, that the dis-
tribution of Pij is uniform, matters for both definitions.
Unfortunately, direct experimental data on the distribution
of Pij in the lung are not available. However, even if the
distribution is not uniform, but normal or exponential, the
scaling exponents will not be influenced as long as the val-
ues of Pij are not correlated. Correlations among Pij have
not been reported. (iii) While the assumption of a uniform
distribution is physiologically reasonable, it is also possi-
ble that there is a weak generational dependence of Pij

[12] which can reduce the scaling region and/or change
the value of the exponents. A stronger generational de-
pendence of Pij in which the mean of Pij as a function of
i increases from the root to the bottom by at least a factor
of 10 will, however, break down the scaling behavior [17].
As a consequence, the very existence of scaling exponents
found in experimental data [8] provides indirect evidence
that the distribution of Pij does not have any significant
generational dependence.

In summary, we have studied a statistical mechanical
model of the distribution of the first avalanches during
lung inflation. Our main result is an analytically solu-
ble model which, compared to the more realistic model
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of Ref. [8], permits exact calculation of the scaling expo-
nents with the avalanche size defined either as the num-
ber of alveoli (definition A) or number of opened airways
(definition B). We have found that the treelike structure
of the airways with the simplest assumptions concerning
opening threshold pressures is sufficient to explain the ex-
istence of power-law distributions observed experimen-
tally [8]. Finally, the fact that the size distribution of the
first avalanches follows a power law suggests that in dis-
ease high pressures for at least short periods of inspiration
might be necessary to open up larger alveolar volumes.
Thus, our results may also find important applications in
the design of appropriate wave forms for artificial ventila-
tion of patients who suffer from substantial airway closure
and alveolar collapse.

We thank P. Ch. Ivanov, R. Sadr, A. Shehter,
K. Sneppen, and especially M. Wortis for very helpful
comments, and NSF Grant No. BES-9503008 and OTKA
2675 for financial support.

[1] J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. West,
Fractal Physiology (Oxford University Press, New York,
1994); Fractals in Natural Sciences, edited by T. Vicsek,
M. Shlesinger, and M. Matsushita (World Scientific,
Singapore, 1994); B. J. West and W. Deering, Phys. Rep.
246, 1 (1994); Growth Patterns in Physical Sciences and
Biology, J. M. Garcia-Ruiz et al. (Plenum, New York,
1993); B. J. West, Fractal Physiology and Chaos in
Medicine (World Scientific, Singapore, 1990).

[2] M. F. Shlesinger and B. J. West, Phys. Rev. Lett. 67, 2106
(1991).

[3] B. J. West and M. F. Shlesinger, Int. J. Mod. Phys. B 3,
795 (1989).

[4] K. G. Horsfield, G. Dart, D. E. Olson, and G. Cumming,
J. Appl. Phys. 31, 207–217 (1971).

[5] L. A. Engel, A. Grassino, and N. R. Anthonisen, J. Appl.
Phys. 38, 1117 (1975).

[6] A. B. H. Crawford, D. J. Cotton, M. Paiva, and L. A.
Engel, J. Appl. Phys. 66, 2511 (1989).

[7] F. Peták, Z. Hantos, A. Adamicza, D. R. Otis, and
B. Daróczy, Eur. Respir. J. 6, 403S (1993); D. R. Otis,
Ph.D. thesis, MIT, 1994.

[8] B. Suki, A.-L. Barabási, Z. Hantos, F. Peták, and H. E.
Stanley, Nature (London) 368, 615 (1994).

[9] Note that although we use the term “avalanche,”
our avalanches are different from those observed in
self-organized criticality (SOC); for a review, see
G. Grinstein, in Scale Invariance, Interfaces, and Non-

Equilibrium Dynamics, edited by A. J. McKane, M. Droz,
J. Vannimenus, and D. Wolf (Plenum, New York, 1995).
The most important difference is in the actual mecha-
nisms that lead to the avalanches: Here we show that the
avalanches in the lung are related to the distribution of
percolation clusters on a Cayley tree.

[10] D. P. Gaver, R. W. Samsel, and J. Solway, J. Appl. Phys.
69, 74 (1990).

[11] The time required to open an airway is well under 0.05
s for the smaller airways [10]. Since the inflation time in
the experiments was 80 s [7], the process of opening an
airway can be considered to be instantaneous.

[12] A recent study of physical tube models [10] finds that
viscous and surface tension forces increase with decreas-
ing radius, so there may exist a generational dependence
of Pij on airway radius ri . It was predicted [10] that Pij

is inversely proportional to ri . There are many additional
factors that can balance this generational dependence, such
as local variations in r , length, surface tension, airway
wall thickness, local elastic moduli, smooth muscle tone,
etc. Additionally, there are two important systematic fac-
tors that compensate this generational dependence. First,
the airway wall volumetric elastic modulus is inversely
proportional to the cube of r [B. Suki et al., J. Appl.
Phys. 75, 2755 (1993)]. Thus, airway wall modulus in-
creases rapidly with decreasing diameter. Since the Pij is
smaller in stiffer tubes, this mechanism alone may balance
the generational dependence of Pij . Second, it was found
that at any given generation i the distribution of ri is not
normal, but it has a longer tail toward the larger radii [H.
Kitaoka and B. Suki (unpublished)]. The fact that this tail
increases with increasing i will again reduce the effect of
the inverse dependence of Pij on ri .

[13] J. Essam, Rep. Prog. Phys. 43, 833 (1980).
[14] A. Bunde and S. Havlin, in Fractals and Disordered

Systems, edited by A. Bunde and S. Havlin (Springer-
Verlag, Berlin, 1996), 2nd ed..

[15] T. E. Harris, The Theory of Branching Processes (Dover
Publication Inc., New York, 1989); S. Asmussen and H.
Hering, Branching Processes (Birkhäuser, Boston, 1983);
N. H. Bingham, J. Appl. Prob. 25A, 215 (1988).

[16] For very small s ø N approximation (7) is also incorrect.
For example, one can show that PAs1d , 1yN3.

[17] If ri11  riy0.86 as in Ref. [8], then in a 14-generation
tree, Pij will increase by no more than a factor of 10.
Since it was suggested that Pij , 1yri [10], we modeled
the generational dependence of Pij so that the mean
of Pij depended on i according to Pi11,j  Pijy0.86.
Simulations in a 12-generation tree showed that using
definition A, the scaling completely breaks down, and with
definition B, the scaling region is significantly reduced to
about one decade.

2195


