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We study the behavior of self-avoiding walks ~SAWs! on square and cubic lattices in the presence of strong
disorder. We simulate the disorder by assigning random energy e taken from a probability distribution P(e) to
each site ~or bond! of the lattice. We study the strong disorder limit for an extremely broad range of energies
with P(e)}1/e . For each configuration of disorder, we find by exact enumeration the optimal SAW of fixed
length N and fixed origin that minimizes the sum of the energies of the visited sites ~or bonds!. We find the

fractal dimension of the optimal path to be d̃opt51.5260.10 in two dimensions ~2D! and d̃opt51.8260.08 in
3D. Our results imply that SAWs in strong disorder with fixed N are much more compact than SAWs in
disordered media with a uniform distribution of energies, optimal paths in strong disorder with fixed end-to-
end distance R, and SAWs on a percolation cluster. Our results are also consistent with the possibility that
SAWs in strong disorder belong to the same universality class as the maximal SAW on a percolation cluster at
criticality, for which we calculate the fractal dimension dmax51.6460.02 for 2D and dmax51.8760.05 for
3D, values very close to the fractal dimensions of the percolation backbone in 2D and 3D.
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I. INTRODUCTION

The problem of self-avoiding walks ~SAWs! in different
types of disorder is related to problems such as polymers in
porous media and spin glasses. For SAWs in the absence of
disorder, the average root mean square of the end-to-end dis-
tance R scales with the length N as R;Nn. Hence SAWs are
fractals with a fractal dimension dSAW51/n . The values of
dSAW in two dimensions ~2D! and 3D are well known ~see
Table I!. The effects of disorder on dSAW has been the subject
of many studies @1–7#. Recently, there has been much inter-
est in the problem of finding the optimal path in a disordered
energy landscape. The optimal path can be defined as fol-
lows: consider a d-dimensional lattice, where each site ~or
bond! is assigned by a random energy e taken from a given
distribution. The optimal path is the path for which the sum
of the energies along the path is minimal. There are two
kinds of the optimal path problems. In the first kind ~fixed-R
problem!, the starting and the ending sites of the path are
fixed, but the length of the path N is not fixed. In the second
kind ~fixed-N problem!, the starting site ~origin! and the
length of the path N are fixed, but the ending point is not
fixed. These problems are relevant in many fields such as
spin glasses @1#, protein folding @2#, and the traveling sales-
man problem @8#.

Cieplak et al. @4# and Porto et al. @5# studied numerically
the behavior of the average path length N for the fixed-R
minimum-energy SAW. If the distribution of energies e is
uniform or Gaussian, N is proportional to R and hence dopt
51. The situation is different in the strong disorder limit. In
this case, the total energy E is dominated by the maximum
value of e along the path. This case can be realized if the
probability density P(e)}1/e for an extremely broad range
of energies. It was found @4,5# that N}Rdopt, where dopt

'1.22 in 2D and dopt'1.42 in 3D. These values are similar
to the fractal dimensions of the typical path of a passive
tracer in the problem of the ideal flow through the percola-
tion cluster, a problem relevant for oil recovery @9#. This fact
is consistent with the possibility that the strong disorder limit
is related to the percolation problem.

Smailer et al. @3# studied the problem of minimum-energy
fixed-N SAWs in which the energies are taken from uniform
and Gaussian distributions. This kind of disorder is called
weak disorder and is different from the strong disorder case
studied here. They studied the asymptotic behavior of the
mean square end-to-end distance R versus N and found that
the fractal dimension in this case is smaller than in the case
of the pure SAW ~see Table I!. The fixed-N problem for
strong disorder has not yet been studied.

Numerical studies of fixed-N SAWs on percolation clus-

TABLE I. Fractal exponents characterizing the end-to-end dis-
tance of SAWs as a function of the length as well as the fractal
dimension of the backbone, dB .

2D 3D

dSAW 4/3 a 1.699 b

d̃opt ~weak, fixed N) 1.25 c 1.4 c

d̃opt ~strong, fixed N) 1.5260.10f 1.8260.08f

dSAW ~percolation at pc) 1.29 d 1.55h

dmax 1.6460.02f 1.8760.05f

dopt ~strong, fixed R) 1.21g 1.44g

dB ~backbone! 1.6432e 1.87e

aRef. @20#.
bRef. @21#.
cRef. @3#.
dRef. @7#.

eRef. @23#.
fRef. @24#.
gRef. @6#.
hRef. @22#.
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ters at criticality have been performed using exact enumera-
tion @7#. The case of percolation clusters can be regarded as
the quenched disorder case in which the energies can take
values of 0 with probability p5pc and ` with probability
p512pc , where pc is the percolation threshold. The results
suggest that the exponents are not significantly different from
those of a pure SAW ~see Table I!.

Here we study the minimum-energy fixed-N SAW in
strong disorder. We find that R scales as N1/d̃opt, with d̃opt

51.5260.10 in 2D and d̃opt51.8260.08 in 3D. These val-
ues are significantly different from the values of the related
problems discussed above @3–7#. We present arguments that
optimal SAWs in strong disorder limit belongs to the same
universality class as maximal SAWs, defined to be the long-
est SAWs on a percolation cluster. In order to test our hy-
pothesis, we numerically calculate their fractal dimension,
dmax , for 2d and 3d and find that the value of dmax is very
close to the value d̃opt for fixed-N SAW in the strong disor-
der limit. The numerical value of dmax found here is similar
to the fractal dimension of the percolation backbone and is
significantly larger than the values of dmax previously re-
ported @10#. Thus we conjecture that the three models ~the
fixed-N SAW in strong disorder, the maximal SAW on a
percolation cluster, and the percolation backbone! belong to
the same universality class, characterized by equal fractal
dimensions.

II. METHOD

We consider a N-step SAW with a fixed origin on
a d-dimensional hypercubic lattice with strong disorder.
We simulate disorder by assigning a random energy ek(k
51•••Ld) to each site of the lattice, where L is the linear
size of the lattice. We also study the case in which the ener-
gies are assigned to the bonds of the lattice. The strong dis-
order case is simulated by selecting ek from an extremely
broad distribution by generating a random number rk , uni-
formly distributed between 0 and 1, and choosing ek
5exp(ark). The parameter a controls the broadness of the
distribution. The probability density of such a distribution is

P~e !5H 1/~ae ! 1<e<exp~a !

0 otherwise.
~1!

The minimum-energy SAW is the configuration that mini-
mizes the total energy

E~N !5(
i51

N

e i ~2!

among all possible SAWs of length N that start at the origin.
We apply the exact enumeration method to generate each

SAW, using the ‘‘backtracking algorithm’’ @11#. At each step,
the SAW has z choices for the direction of the next step,
where z is the coordination number. If a particular choice of
the direction leads to a self intersection, we disregard this
choice and take the next possible choice for this step. After
the walk reaches the required length N, or if all the choices

for the current step lead to intersection, we backtrack our
SAW and find the step for which a new direction is available.
In this way, the algorithm constructs the tree of all possible
SAWs in a certain order.

For each configuration of disorder, we find the minimum-
energy SAW @12#. Using this method, we obtain each mini-
mum SAW of up to 60 steps in 2D and up to 40 steps in 3D,
in typically 106 realizations of disorder. We apply this
method for strong disorder of the site and bond cases @13#.
We compute R by averaging the square root of the end-to-
end distance of the minimum SAW for each configuration of
disorder. We calculated both the end-to-end distance and the
average square radius of gyration and find no differences in
the values of the exponents.

We also study the infinitely strong disorder limit a→` . In
this limit, the sum of energies can be replaced by the largest
value of the energy along the path @14#. Our results for the
infinite limit coincide with the ones obtained with a>100.

III. RESULTS

We study the asymptotic value of d̃opt for the minimum-
energy SAW in the strong disorder limit in two and three
dimensions. In order to find d̃opt we use successive slopes
@3# defined as

d̃opt~N ![2
ln~N11 !2ln~N21 !

ln~RN11
2 !2ln~RN21

2 !
. ~3!

We estimate the errors for d̃opt(N) as the standard deviations
of the values d̃opt(N) computed for 10 independent sets of
104 configurations.

Figures 1~a! and 1~b! show the value of d̃opt(N) vs 1/N
for 2D and 3D, respectively, in comparison with the behavior
of these values for fixed-N SAWs in the weak disorder and
for regular SAWs. Both results are for the site case. In con-
trast with regular SAWs and SAWs in weak disorder, the
values of d̃opt(N) in strong disorder have strong corrections
to scaling, manifesting in the nonlinear behavior of d̃opt(N)
versus 1/N for 1/N→0. Our attempt to achieve better straight
line fits by plotting d̃opt(N) vs 1/Na for various 0,a,1
suggests that the limiting value of d̃opt(N) for N→` may be
significantly larger than the values obtained in Fig. 1. As a
result of these estimates, we report d̃opt51.5260.10 in 2D
and d̃opt51.8260.08 in 3D . This shows the minimum en-
ergy fixed-N SAWs in strong disorder to be more compact
than other types of SAWs studied earlier ~see Table I!.

In order to better understand this type of SAW we study
the distribution of the maximum value rm of random vari-
ables r i5a21lne, i51, . . . N , for the minimum-energy SAW
of different length N. This distribution is bell shaped, narrow,
and has a maximum at rm5r* @see Fig 2~a!#. We find that
for N→` the distribution becomes steeper in the vicinity of
r*. Moreover, we find that

ur*2pcu;A/N s̃, ~4!
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where pc is the percolation threshold for bond or site perco-
lation, A is a positive constant and s̃'0.5 @see inset of Fig.
2~a!#.

The behavior of the distribution of rm resembles the be-
havior of the distribution of the maximal threshold value in
the invasion percolation model @15,16# for different cluster
sizes S I @see Fig 2~b!#. In the invasion percolation model,
each site of the lattice is assigned a random threshold r,
uniformly distributed on the interval 0,r,1. Initially, a site
at the origin is invaded and the invaded cluster is generated
from it. At each stage of the process, the boundary of the
invaded cluster consists of the sites not yet invaded, which
are the nearest neighbors of the invaded sites. The next site
invaded is the boundary site with the smallest value of r.

In analogy with our optimization problem, one can con-
struct the distribution of the maximal value of rm of the
threshold of the invaded cluster of size S I . This distribution
can be explained in terms of the usual percolation theory. Let
us assume that we select unblocked sites if r<rm and
blocked sites otherwise. Thus the value of rm can be inter-
preted as the occupancy probability p of a percolating site.
Suppose that in invasion percolation, we obtain a cluster of
size S I with a value of rm<p . This configuration, in terms of

FIG. 1. Effective exponent d̃opt as a function of 1/N for the
minimum-energy SAW, in ~a! d52 and ~b! d53, with strong site
disorder of strength a5100 (s) with error bars ~–! compared with
the same problem in weak disorder (h) and with the pure SAW
(d). The dashed lines are used as a guide for the eye to show the
extrapolated values of the effective exponent in the limit 1/N→0.

Note that since the dependence of d̃opt on 1/N is not linear, the
results of linear extrapolation can be significantly smaller than the
actual limiting value.

FIG. 2. ~a! Plot of the distribution P(rmuN) of the maximum
random numbers rm ~associated with the energies along the optimal
path! for different values of N ~different symbols! in 2D ~bond
case!. The lines are used as a guide except for N52 that indicates
the result of Eq. ~13!. The inset figure shows the maximum values
of the distribution rm* divided by pc (pc 5 critical probability! as a
function of 1/Ns ,with s51/2 for sites (s) and bonds (h). Here
we use a5100. ~b! Plot of the distribution of the maximal threshold
values rm overcome in the invasion percolation clusters of size S I

indicated in the graph. The lines are used as a guide except for S I

54,8, and 16 that show the analytical results of Eq. ~5!. The inset
figure shows the maximum values of the distribution rm* divided by
pc (pc5critical probability! as function of 1/Ns, where s536/91
@15#.
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a regular percolation problem, corresponds to a percolation
cluster with size Sp>S I for a given percolation probability
p5rm . Hence, the probability P(rm<puS I) in an invasion
percolation problem is equal to the probability P(Sp>S Iup
5rm) in the conventional percolation problem. The latter
probability has been computed analytically for small cluster
sizes S I using exact enumeration @17#,

P~SP>S Iup !512 (
s51

SI21

(
t54

2s12

sps21~12p ! tgs ,t , ~5!

where gs ,t is the number of different clusters of size s and
perimeter t (g1,451, g2,652, g3,754, g3,852, . . . ). Thus the
probability density of rm ,P I(rmuS I), in invasion percolation
can be expressed as

P I~rmuS I!5

dP~Sp>S Iup5rm!

drm
~6!

and is shown in Fig. 2~b! for small S I .
For S I→` , we have

P~Sp>S Iup5rm!→P`~rm!, ~7!

where P`(rm) is the probability of an infinite cluster, which
is the order parameter of the percolation problem, character-
ized by the critical exponent b:

P`;urm2pcu
b rm.pc ,

P`50 rm<pc . ~8!

Thus

lim
SI→`

P I(rmuS I)5

dP`~p !

dp U
p5rm

. ~9!

This limiting distribution is strictly equal to zero for rm
,pc and diverges as (rm2pc)b21 as rm→pc1« .

For large finite S I , the distribution P I(rmuS I) is not
strictly equal to zero for rm,pc , but rapidly decays as rm
decreases. It is known @15# that in the regular percolation
problem, for p,pc ,

P~Sp>S Iup !; f „~pc2p !S I
s…, ~10!

where f (x) decays exponentially as x→` ,s51/(npd f),np is
the percolation correlation exponent, and d f is the fractal
dimension of the percolation cluster. Hence for rm,pc ,

P~rm<puS I!; f „~pc2rm! S I
s…, ~11!

which means that the distribution of rm rapidly approaches
zero for rm,pc2AS I

2s , where A is some positive coeffi-
cient. The maximum of the probability density P(rm) is
reached at the point r*, such that d2 f (x)/dx2ux*50, where
x*5(pc2r*) S I

s . Hence r*5pc2x*S I
2s . In our problem,

d̃opt'1.52 in 2D, np54/3 thus we can expect s̃

51/(npd̃opt)'0.5 in good agreement with our numerical re-
sults in Fig. 2~a!.

The similarities between invasion percolation and fixed-N
SAWs in strong disorder are not surprising, since for large a,
our algorithm essentially selects the walks that minimize the
largest value of r @14#. In invasion percolation, the value of
r(S I) for the last selected site S I fluctuates, sometimes reach-
ing the value rm , which is the largest value among all pre-
viously invaded sites ~see Fig. 3!. Suppose that the longest
possible SAW starting at the origin and staying inside this
invaded cluster has a length Nmax(S I). Then all optimal
SAWs of lengths N<Nmax(S I) must stay inside this cluster
too. Moreover, the optimal SAW of length N5Nmax(S I)
must exactly coincide with the maximal SAW in the cluster
of size S I . For N.Nmax(S I), the optimal SAWs will achieve
the maximal rm and stay inside the percolation cluster corre-
sponding to a new record value of the percolation probability
rm8 .rm ~see Fig. 4!. As N grows, the record value of rm

approaches the percolation threshold pc . In Fig. 5, we show
a typical configuration of an optimal SAW in a strong site
disorder in 2D. We assign to each site white color if the site
has a value r,rm and gray color otherwise.

Sometimes, however, the record value rm exceeds the per-
colation threshold. In this case, rm may become an absolute
maximal record that is never overcome for larger N or S I . In
this case, the optimal SAW will try to minimize the second
largest value of energy and continue to stay inside the inva-
sion percolation cluster corresponding to the second largest
value of rm achieved after the absolute record.

In a full analogy with Eq. ~6!, the probabilty distribution
of the maximum value for the optimal SAW of length N is

PS~rmuN !5

dP~Nmax>Nup5rm!

drm
, ~12!

where

FIG. 3. Linear plot of the random values r as a function of the
cluster size S I for invasion percolation ~site case!. The solid line
shows r as a function of the cluster size S I . The dotted line shows
the maximum value rm as a function of S I . The dashed line shows
pc . As the cluster size increases, rm→pc .
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P~Nmax>Nup5rm!512 (
0

N21

bn~p !, ~13!

and bn(p) is the probability of finding a maximal walk of
length n starting from the origin at percolation probability p.
One can show that bn(p) are polynomials with respect to p

bn~p !5(
t ,s

bn ,s ,tp
s21~12p ! t, ~14!

where bn ,s ,t are integers such that (n50
` bn ,s ,t5sgs ,t . The

coefficients bn ,s ,t can be found by exact enumeration similar
white Ref. @10#. Analyzing all clusters of size s<5, one can
easily find that

b0~p !5~12p !4, ~15!

and

b1~p !54p~12p !6
12p2~12p !8

14p2~12p !7

14p3~12p !8
1p4~12p !8. ~16!

In summary, the behavior of the optimal SAW path can be
explained in terms of connected basins with energy e<ec
[exp(apc), where pc is the critical value for percolation. In
order to minimize the energy, the SAW tries to fill the entire
basin. When the length of the SAW is larger than the maxi-
mal size that may fit into the basin, the SAW jumps to an-
other basin and tries to fill it. For very large N, the SAW is
almost completely confined to a finite percolation cluster at

criticality and will often coincide with the longest possible
SAW inside this cluster. Thus the fractal dimension dmax of
the longest SAW inside the finite percolation cluster at criti-
cality must be a rigorous upper bound for dopt .

Moreover, the longest SAW must stay inside the percola-
tion backbone connecting the origin and the last step of the
SAW. If the SAW enters a singly connected ‘‘dangling end,’’
it cannot come back to the position of the last step without
self-intersection. Thus the fractal dimension of the percola-
tion backbone dB is a rigorous upper bound for both dmax
and dopt . Since the optimal SAW tries to be as compact as
possible in order to ‘‘fit’’ inside the cluster @18# and the long-

FIG. 5. A typical optimal SAW of length N530 in the strong
disorder limit in 2D. The sites with random numbers r,rm50.46
are white, the sites with random numbers r.rm are dark gray and
the site with r50.46 is light gray. The optimal SAW in this con-
figuration is shown as a black line. The origin is marked by the
black square. One can see that the path stays within the percolation
cluster for p5rm . Moreover, visual inspection shows that this path
coincides with the longest possible SAW inside the cluster.

FIG. 6. Log-Log of the effective exponent dmax(Nmax) as a
function of 1/Nmax of a SAW in a finite percolation cluster at the
criticality in 2D (s) and 3D (h). The symbols are the results of
simulations, the dashed line is used as a guide to show the
asymptotic value.

FIG. 4. Schematic picture of invasion clusters at three different
succesive record values of rm(S I)5r(S I). The positions of the
maximal threshold rm(S I) are shown by open circles. Two optimal
SAW of different lengths start from the origin ~closed circles!. One
SAW with N5Nmax(S1) ~thin solid line! fits inside the cluster S1.
Another SAW of length N.Nmax(S1) ~dashed lines!, achieves the
maximal rm(S1) and stays inside the cluster S2 corresponding to a
new record value of the percolation probability rm(S2).rm(S1).
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est SAW tries to fill the entire backbone, it is plausible that
d̃opt5dmax5dB .

In order to verify this hypothesis, we simulate the longest
SAW on a cluster at criticality and study by exact enumera-
tion R as a function of the maximum length N. We use the
Leath @19# algorithm to generate finite clusters at criticality.
We find by exact enumeration the longest SAW that starts
from the origin of each Leath cluster. We perform the simu-
lation over 53106 realizations of disorder in d52 and 106

in d53. We average the square of the end-to-end distance of
the longest SAW for each value of the maximum length
Nmax . In Fig. 6, we plot the effective exponent dmax(Nmax)
@see Eq. ~3!# as a function of 1/Nmax . We find

dmax5H 1.6460.02 in d52

1.8760.05 in d53.
~17!

These values are within the error bars with the values we find
for d̃opt . The values of dmax found here coincide with the
fractal dimension of the backbone and are significantly larger
than the values previously reported @10#.

ACKNOWLEDGMENT

L.A.B acknowledges the financial support of UNMdP,
Argentina.

@1# M. Mezard, G. Parisi, N. Sourlas, G. Toulouse, and M. Vira-
soro, Phys. Rev. Lett. 52, 1156 ~1984!.

@2# A. Ansari, J. Berendzen, S.F. Bowne, H. Fraunfelder, I.E.T.
Iben, T.B. Sauke, E. Shyamsunder, and R.D. Young, Proc.
Natl. Acad. Sci. U.S.A. 82, 5000 ~1985!.

@3# I. Smailer, J. Machta, and S. Redner , Phys. Rev. E 47, 262
~1993!.

@4# M. Cieplak, A. Maritan, and J.R. Banavar, Phys. Rev. Lett. 72,
2320 ~1994!; 76, 3754 ~1996!.

@5# M. Porto, S. Havlin, S. Schwartz, and A. Bunde, Phys. Rev.
Lett. 79, 4060 ~1997!.

@6# M. Porto, N. Schwartz, S. Havlin, and A.A. Bunde, Phys. Rev.
E 60, R2448 ~1999!.

@7# M.D. Rintoul, J. Moon, and H. Nakanishi, Phys. Rev. E 49,
2790 ~1994!.

@8# S. Kirkpatrick and G. Toulouse, J. Phys. ~France! Lett. 46,
1277 ~1985!.

@9# J.S. Andrade, S.V. Buldyrev, N.V. Dokholyan, S. Havlin, P.R.
King, Y. Lee, G. Paul, and H.E. Stanley, Phys. Rev. E 62, 8270
~2000!.

@10# D. Stauffer and A. Aharony, Introduction to Percolation
Theory ~Taylor & Francis, Philadelphia, 1994!.

@11# J. Martin, in Phase Transitions and Critical Phenomena, ed-
ited by C. Domb and M. S. Green ~Academic London, 1974!,
Vol. 3; S. Redner, J. Stat. Phys. 29, 309 ~1982!.

@12# In order to speed up the calculation, we abandoned all the
SAW’s for which the sum of the energies E(M )5( i51

M e i ,M
<N exceeds the actual minimum energy Emin(N) of the pre-
vious explored N-steps SAWs.

@13# In the site-disorder case there exists a degeneracy for the mini-
mum SAWs. The same set of sites may be visited in a different
order by several different SAWs. Those SAWs may have dif-
ferent end-to-end distances and in that case, we compute the
average square distance.

@14# Consider two closest random values for the energies e1

5exp(ar1) and e25exp(ar2) such that r25r111/P , where P

is the period of the random generator number (P@Ld).We

have e25e1 exp(a/P). If exp(a/P)52, the sum of the ener-
gies can be represented as a binary number in which each
binary digit represents an energy value of a different order of
magnitude. In this limit, the sum of the energies of the path is
completely governed by the largest energy. Any SAW i is
characterized by a set of its energy values S i

5$e i1 ,e i2 , . . . ,e iN%, sorted in decreasing order, so that e i j

.e i j11. We define that Sk,S i if there exists a value of m, 1
<m<N , for which

eij5ekj for j,m and

ek j,e i j for j5m .

Using exact enumeration, we find the SAW with the minimal
S i . The results for these SAWs coincide with the results for
finite a>100. See also @5#.

@15# B. D. Hughes, Random Walks and Random Environments, Vol-
ume 2: Random Environments ~Clarendon Press, Oxford,
1995!.

@16# D. Ben-Avraham and S. Havlin, Diffusion and Reactions in
Fractals and Disordered Systems ~Cambridge University
Press, Cambridge, 2000!; Fractals and Disordered Systems,
edited by A. Bunde and S. Havlin ~Springer, New York, 1995!.

@17# M.F. Sykes and M. Glen, J. Phys. A 9, 87 ~1976!.
@18# This hypothesis enables us to improve our simulation and ob-

tain even larger SAWs by rejecting the walks that chose energy
sites well above the percolation threshold. With this approach,
we generate SAWs up to 70 steps in two dimensions and up to
50 steps in three dimensions for typically 23106 realizations
of disorder in 2D and up to 63105 realizations in 3D.

@19# P.L. Leath, Phys. Rev. B 14, 5046 ~1976!.
@20# B. Nienhuis, Phys. Rev. Lett. 49, 1062 ~1982!.
@21# M. Muthukumar and B.G. Nickel, J. Chem. Phys. 86, 460

~1987!.
@22# P. Grassberger, Physica A 262, 251 ~1999!.
@23# Fractals and Disordered Systems, edited by A. Bunde and S.

Havlin ~Springer, Berlin, 1996!.
@24# Our results by exact enumeration in finite clusters.

BRAUNSTEIN, BULDYREV, HAVLIN, AND STANLEY PHYSICAL REVIEW E 65 056128

056128-6


