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We study the multifractal spectrum of the current in the two-dimensional random resistor network at the
percolation threshold. We consider two ways of applying the voltage differéndeio parallel bars, andi)
two points. Our numerical results suggest that in the infinite system limit, the probability distribution behaves
for smalli asP(i)~1/i, wherei is the current. As a consequence, the momentsbbrderqg<q,=0 do not
exist and all currents of value below the most probable one have the fractal dimension of the backbone. The
backbone can thus be described in terms of dnlplobs of fractal dimensiodg and(ii) high current carrying
bonds of fractal dimension going from:ito dg .

PACS numbe(s): 64.60.Ak, 05.45.Df

The transport properties of the percolating cluster havdields, ranging from model systems such as D[¥5] to
been the subject of numerous studjds2]. A particularly  physiological data such as heartbgbs].
interesting system is the random resistor netw@RN), It was first believed8,9] that the low current part d®(i)
where the bonds have a random conductance. The randoamd of the multifractal spectrum follow a log-normal law as
resistor network serves as a paradigm for many transpoit is the case on hierarchical lattices. It is now clghr,18
properties in heterogeneous systems as well as being a sirtivat for small currents, the current probability distribution
plified model for fracturd 3]. follows a power lawP(i)~i°~*, whereb=0. For large cur-
The first studies of the RRN were devoted to effectiverents, there is a weak dependence on the systenisirkis
properties of the networkconductivity, permittivity, etg.  is in contrast with small currents, which are governed by
[4,5], but for many practical applications, such as fractureyvery long paths, and therefore depend more strongliz.dh
and dielectric breakdow{8], the central quantity is the prob- was suggesteldL7,18 that the exponert of the low-current
ability distribution P(i) of currentsi. For instance, in the part has a 1/loy dependence, wherte is the system size.
random fuse network, it is the maximum current correspondThe asymptotic valud,, of the exponentb is of crucial
ing to the hottest or “red” bonds which will determine the importance. Ifb,, is finite and positive, then a low current
macroscopic failure of the systef8]. evolves on a subset with a fractal dimension depending on its
The probability distributionP(i) has many interesting value. On the other hand, lif,, is zero, then the low current
features, one of which is multifractalifyp—13]: in order to  part of the multifractal spectrum is flat and the entire back-
describeP(i), an infinite set of exponents is needed. Thisbone is contributing to low currents. It is thus important to
idea of multifractality was initially proposed to treat turbu- understand if the apparent subset structure with different
lence[14] and later applied successfully in many different fractal dimensions is a finite-size effect.
This problem was adressed by Batrowtial. [17] who
conjectured a zero asymptotic slope, and by Aharengl.
*Permanent address: CEA-BIII, Service de Physique de la Maf18] who proposed a finite asymptotic value. The maximum
tiere Condense, 91680, Bruyeres-Le-Chatel, France. value ofL in the literature is 128§17], so numerical esti-
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FIG. 1. Multifractal spectra for fixed voltage fa) parallel bars
and (b) for two injection points separated by a distance4. We
show the results for seven different values oLt
=50,100,200,400,600,750,1000 and averaged ovérchffigura-
tions (L increases from the bottom to the joprhe horizontal
dashed line is atlz=1.643.

mates could not lead to a definite conclusion. In this Rapi
Communication, we present evidence that the asymptoti

slope is zero.

We first recall the basis of multifractality applied to the
percolating two-dimensional resistor network of linear size

L. Letn(i,L) be the number of bonds carrying currénBy

the steepest descent method, the main contributiar{itd.)

for largeL is given by[8,9]
n(i,L)~Lfeb), (1)

where a=—logi/logL. The multifractal spectrunf(a,L)
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tion of g, while in the multifractal case, the exponents are not
described by a simple linear function @fin theL — o limit,
knowing f(«) is equivalent to knowing the infinite set of
exponentsry, asf(a) is the Legendre transform of, [3].

The low current part of («,L) was found numerically to
be a power law of slopb=b(L), where[17]

A
——+¢g(L)

b(L)=b.+ logL

@

ande(L) is a correction decreasing faster than 1llloghen

L is increasing. This equation shows a strong finite-size ef-
fect since lod- grows very slowly, and two possibilities for
b., were proposedy..,=0 [17] or b,,=1/4[18].

We consider the two-dimensional random resistor net-
work at criticality, i.e., the fraction of conducting bondss
equal to its critical valugp=p.=1/2. We first apply a volt-
age difference between two parallel bars. We compute
f(a,L), for a fixed voltage difference, fdr=50,...,1000,
and average over f@onfigurations for each. We show our
results in Fig. 1a). The slope is clearly decreasing with
confirming the strong finite-size effects already observed
[17,18.

Next, we consider a second type of configuration, which
we call the “two injection points” case, in contrast to the
usual “parallel bars” case. We impose a voltage difference
between two point$ and Q separated by a distanceand
we look for the backbone connecting these two points. This
situation was studied if20,21], but here we keep only the
backbones of sizé. In this way, we have large backbones
connecting the two point® andQ, and forr <L we expect
to have a large number of small currents on bonds belonging
to long loops. The multifractal spectrum is then defined in
the same way as for the parallel bars and we calculate for
different values ol the slope of its small-current part. The

C[11ultifractal spectrum in this case is shown in Figb)l We

bserve that there is a large amount of small currents, and

at the asymptotic limit is reached faster in the two injection
points case. We expect that the low current distribution will
be asymptotically the same as in the parallel bar case, so the
consistency between the two configurations will support our
results. However, for large currents there are some distinct
differences in the multifractal spectruf@2].

Figure 2a) shows the slopé versus 1/lod. according to

Eq. (2) for both multifractal spectra. The extrapolationlto
= is consistent withb,,=0 in both cases. This result is
consistent with the behavior of the successive interdépgs

=logn/logL can thus be interpreted as the fractal dimensior2(b)].

of the subset of bonds carrying the currénffhe qth mo-
ment of the current is defined &,=(Zi9), where the sum
is over all bonds carrying a nonzero current dafl denotes

Another functional form ofo versusL could lead to an-
other value ob,, . If we replace the abscissa of Figazby
1/(logL)”, then we find that the extrapolated value for

an average over different disorder configurations. These madepends ork, ranging fromb,.=0.10 for k=2 to b,,<0

ments exists fog>q., and it can be easily showni8] that
the “threshold” isq.= —b. The asymptotic slope thus give
the asymptotic value of the threshald.

For the fixed current ensemble, one observes B#]
M,~L"a for largeL and forq>q. and wherer is a univer-
sal exponent. In particularg=dg, 7=t/v, and 7.,=1/v
[19], wheredg is the fractal dimension of the backbonéhe
conductivity exponent, and is the correlation length expo-
nent. If the behavior is monofractal, theg is a linear func-

(which is impossiblgfor k= 0.5. It is numerically difficult to
distinguish between a 1/ldgand a 1/(lod.)? behavior, but
the 1/logL is the most commonly usgd 7,18

In Fig. 2(a), we observe higher order corrections to the
behaviorb(L)=b,+ A/logL. A better fit can be obtained by
adding to the linear form a small quadratic teBf(logL)?
(and eventually even cubic and quartic term&/e find that
we cannot do a quadratic fit over the whole range of llllog
and indeed this leads to two nonphysical resuytisFor both
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o1y ® o g 7 FIG. 3. Maximum off(a,L), fpmaL), in the the two injection
o a points case vs 1/lggL. The least square fit shown gives the ex-
0.0 N N trapolated value dt — of dg close to the accepted value of 1.64.
A °© Also, we found that a log-log plot adg—f,.{(L) vsL is remark-
< 01 N 1 ably straight, with slope=—0.20.
02f °° 1
o leading term. There is no proof that the leading term of the
-03 1 expansion is 1/log rather than (1/lody)” with x# 1. How-
ever, the assumption that the leading term of the expansion is
04 500 7000 1/logL with b,.=0 is consistent with our numerical data, and
L shows that the correctiog(L) decays faster than an inverse
0.20 . . . , power of logL [see Fig. 2c)]. Finally, we note that the se-
R guence of maximum values ¢{«,L) for the two injection
015 15 © points case plausibly extrapolates in the variable ll@p
otk Ié)—mo to a value ofdg close to the known value 1.64ig.
< oos|® | Thus our results suggest the intriguing possibility that for
@ o0 L—oo, the small-current part df(«,L) is a horizontal line at
) O S S WU G—— 4 the valuedg, implying that in an infinite system the fractal
dimension of the subset contributing to small currerdds
-0.05 - 1 independent of the value ok. In this sense, the small-
current probability distribution is apparently not multifractal.
010 200 200 200 200 1000 The “perfectly balanced” bonds which carry zero current
L have a fractal dimension equaldg [17]. Since these bonds

FIG. 2. (a) Slopeb vs 1/logL. The circles correspond to the Cf)nt”bl_“e t_Of(a’L) for a—ce, the fac_t that their fractal
parallel bars case and the triangles to the two injection points casé&limension isdg supports our hypothesis that.=0. A re-
These values were obtained by fitting the small current parts ofated conclusion is that.=0, or the negative moments of
Figs. 1a) and 4b) roughly over the range 26a<5. The extrapo-  the current do not exist in the infinite-size limit. In particular,
lation shown as a guide to the eye is consistent Witk-0. The it shows that the first-passage time for a tracer particle trav-
error bars where estimated by computing the local slopes and argling in a flow field in a porous medium modeled by a per-
going from 0.02 to 0.005 ak increases(b) Successive intercepts cglation cluster diverges in an infinite system.
computed by using a least square fit over three successive points. Moreover, the resulb,.=0 is supported by the following

The circles correspond to the parallel bars case, the triangles to tr&‘rgument Ifb.. were not zero. then the number of bonds

two injection points case. These plots are consistentwjth 0. (c) carrying a smgll curreritwould k;en(i 0L =%)~i b This

Correctione(L) for L=25 toL=1000 as given by Eq?2). This . - ’ ) .

plot showsat(he) fast decay of the correctio?m y Eq2) behavior would indicate that the number of bonds carrying a
small currenti approaches zero when-0, which seems

geometries, the fits haweegativeslopes at 1/log.=0, which  unlikely, since on an infinite backbone, the number of loops
is not physical since the larger the system size, the larger this very large, anth(i—0,L =) should be nonzero. Hence
number of small currents, so the behaviorm&hould be b,=0. This argument is consistent with the fact that
monotonically decreasing with. (b) A second defect of the total number of bonds carrying a nonzero current,
these quadratic fits is that the obtained values for the interfon(i,L)d(logi), should diverge ak—o°.
cepts aredifferentfor the two geometries, which is impos- For large values of the current, the multifractal features do
sible. not change ak increases, suggesting that in the infinite-size
The important assumption here is the behavior of thdimit, there are essentially two different type of subsets. The
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first set comprises the blobs of fractal dimensity) and the We thank L.A.N. Amaral for valuable help, J.S. Andrade,
second set comprises links carrying larger values of the curA. Chessa, A. Coniglio, N.V. Dokholyan, P. Gopikrishnan,
rent (red bondg of fractal dimension ranging frond,.qy P.R. King, G. Paul, A. Scala, and F.W. Starr for useful dis-
=1/v todg. cussions, and DGA and BP Amoco for financial support.
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