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Multifractal properties of the random resistor network
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We study the multifractal spectrum of the current in the two-dimensional random resistor network at the
percolation threshold. We consider two ways of applying the voltage difference:~i! two parallel bars, and~ii !
two points. Our numerical results suggest that in the infinite system limit, the probability distribution behaves
for small i asP( i );1/i , wherei is the current. As a consequence, the moments ofi of orderq<qc50 do not
exist and all currents of value below the most probable one have the fractal dimension of the backbone. The
backbone can thus be described in terms of only~i! blobs of fractal dimensiondB and~ii ! high current carrying
bonds of fractal dimension going from 1/n to dB .

PACS number~s!: 64.60.Ak, 05.45.Df
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The transport properties of the percolating cluster h
been the subject of numerous studies@1,2#. A particularly
interesting system is the random resistor network~RRN!,
where the bonds have a random conductance. The ran
resistor network serves as a paradigm for many trans
properties in heterogeneous systems as well as being a
plified model for fracture@3#.

The first studies of the RRN were devoted to effect
properties of the network~conductivity, permittivity, etc.!
@4,5#, but for many practical applications, such as fractu
and dielectric breakdown@3#, the central quantity is the prob
ability distribution P( i ) of currentsi. For instance, in the
random fuse network, it is the maximum current correspo
ing to the hottest or ‘‘red’’ bonds which will determine th
macroscopic failure of the system@3#.

The probability distributionP( i ) has many interesting
features, one of which is multifractality@6–13#: in order to
describeP( i ), an infinite set of exponents is needed. Th
idea of multifractality was initially proposed to treat turb
lence @14# and later applied successfully in many differe
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fields, ranging from model systems such as DLA@15# to
physiological data such as heartbeat@16#.

It was first believed@8,9# that the low current part ofP( i )
and of the multifractal spectrum follow a log-normal law
it is the case on hierarchical lattices. It is now clear@17,18#
that for small currents, the current probability distributio
follows a power lawP( i ); i b21, whereb>0. For large cur-
rents, there is a weak dependence on the system sizeL. This
is in contrast with small currents, which are governed
very long paths, and therefore depend more strongly onL. It
was suggested@17,18# that the exponentb of the low-current
part has a 1/logL dependence, whereL is the system size
The asymptotic valueb` of the exponentb is of crucial
importance. Ifb` is finite and positive, then a low curren
evolves on a subset with a fractal dimension depending on
value. On the other hand, ifb` is zero, then the low curren
part of the multifractal spectrum is flat and the entire ba
bone is contributing to low currents. It is thus important
understand if the apparent subset structure with differ
fractal dimensions is a finite-size effect.

This problem was adressed by Batrouniet al. @17# who
conjectured a zero asymptotic slope, and by Aharonyet al.
@18# who proposed a finite asymptotic value. The maximu
value of L in the literature is 128@17#, so numerical esti-
-

R3283 © 2000 The American Physical Society



pi
ot

e
ize

io

m

e

-

ot

f

ef-
r

et-

ute

ed

ich
e
ce

his

s

ing
in
for

e

and
on
ill
the

our
inct

s

he

RAPID COMMUNICATIONS

R3284 PRE 61BARTHELEMY, BULDYREV, HAVLIN, AND STANLEY
mates could not lead to a definite conclusion. In this Ra
Communication, we present evidence that the asympt
slope is zero.

We first recall the basis of multifractality applied to th
percolating two-dimensional resistor network of linear s
L. Let n( i ,L) be the number of bonds carrying currenti. By
the steepest descent method, the main contribution ton( i ,L)
for largeL is given by@8,9#

n~ i ,L !;L f (a,L), ~1!

where a[2 log i/logL. The multifractal spectrumf (a,L)
[ logn/logL can thus be interpreted as the fractal dimens
of the subset of bonds carrying the currenti. The qth mo-
ment of the current is defined asMq[^( i q&, where the sum
is over all bonds carrying a nonzero current and^•& denotes
an average over different disorder configurations. These
ments exists forq.qc , and it can be easily shown@18# that
the ‘‘threshold’’ is qc52b. The asymptotic slope thus giv
the asymptotic value of the thresholdqc .

For the fixed current ensemble, one observes that@8,9#
Mq;Ltq for largeL and forq.qc and wheretq is a univer-
sal exponent. In particular,t05dB , t25t/n, and t`51/n
@19#, wheredB is the fractal dimension of the backbone,t the
conductivity exponent, andn is the correlation length expo
nent. If the behavior is monofractal, thentq is a linear func-

FIG. 1. Multifractal spectra for fixed voltage for~a! parallel bars
and ~b! for two injection points separated by a distancer 54. We
show the results for seven different values ofL
550,100,200,400,600,750,1000 and averaged over 104 configura-
tions (L increases from the bottom to the top!. The horizontal
dashed line is atdB.1.643.
d
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tion of q, while in the multifractal case, the exponents are n
described by a simple linear function ofq. In theL→` limit,
knowing f (a) is equivalent to knowing the infinite set o
exponentstq , as f (a) is the Legendre transform oftq @3#.

The low current part off (a,L) was found numerically to
be a power law of slopeb5b(L), where@17#

b~L !5b`1
A

logL
1«~L ! ~2!

and«(L) is a correction decreasing faster than 1/logL when
L is increasing. This equation shows a strong finite-size
fect since logL grows very slowly, and two possibilities fo
b` were proposed,b`50 @17# or b`51/4 @18#.

We consider the two-dimensional random resistor n
work at criticality, i.e., the fraction of conducting bondsp is
equal to its critical valuep5pc51/2. We first apply a volt-
age difference between two parallel bars. We comp
f (a,L), for a fixed voltage difference, forL550, . . .,1000,
and average over 104 configurations for eachL. We show our
results in Fig. 1~a!. The slope is clearly decreasing withL,
confirming the strong finite-size effects already observ
@17,18#.

Next, we consider a second type of configuration, wh
we call the ‘‘two injection points’’ case, in contrast to th
usual ‘‘parallel bars’’ case. We impose a voltage differen
between two pointsP andQ separated by a distancer, and
we look for the backbone connecting these two points. T
situation was studied in@20,21#, but here we keep only the
backbones of sizeL. In this way, we have large backbone
connecting the two pointsP andQ, and forr !L we expect
to have a large number of small currents on bonds belong
to long loops. The multifractal spectrum is then defined
the same way as for the parallel bars and we calculate
different values ofL the slope of its small-current part. Th
multifractal spectrum in this case is shown in Fig. 1~b!. We
observe that there is a large amount of small currents,
that the asymptotic limit is reached faster in the two injecti
points case. We expect that the low current distribution w
be asymptotically the same as in the parallel bar case, so
consistency between the two configurations will support
results. However, for large currents there are some dist
differences in the multifractal spectrum@22#.

Figure 2~a! shows the slopeb versus 1/logL according to
Eq. ~2! for both multifractal spectra. The extrapolation toL
5` is consistent withb`50 in both cases. This result i
consistent with the behavior of the successive intercepts@Fig.
2~b!#.

Another functional form ofb versusL could lead to an-
other value ofb` . If we replace the abscissa of Fig. 2~a! by
1/(logL)k, then we find that the extrapolated value forb`

depends onk, ranging fromb`.0.10 for k52 to b`,0
~which is impossible! for k50.5. It is numerically difficult to
distinguish between a 1/logL and a 1/(logL)2 behavior, but
the 1/logL is the most commonly used@17,18#.

In Fig. 2~a!, we observe higher order corrections to t
behaviorb(L)5b`1A/ logL. A better fit can be obtained by
adding to the linear form a small quadratic termB/( logL)2

~and eventually even cubic and quartic terms!. We find that
we cannot do a quadratic fit over the whole range of 1/logL,
and indeed this leads to two nonphysical results:~a! For both
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geometries, the fits havenegativeslopes at 1/logL50, which
is not physical since the larger the system size, the larger
number of small currents, so the behavior ofb should be
monotonically decreasing withL. ~b! A second defect of
these quadratic fits is that the obtained values for the in
cepts aredifferent for the two geometries, which is impos
sible.

The important assumption here is the behavior of

FIG. 2. ~a! Slope b vs 1/logL. The circles correspond to th
parallel bars case and the triangles to the two injection points c
These values were obtained by fitting the small current parts
Figs. 1~a! and 1~b! roughly over the range 2.5,a,5. The extrapo-
lation shown as a guide to the eye is consistent withb`50. The
error bars where estimated by computing the local slopes and
going from 0.02 to 0.005 asL increases.~b! Successive intercept
computed by using a least square fit over three successive po
The circles correspond to the parallel bars case, the triangles t
two injection points case. These plots are consistent withb`50. ~c!
Correction«(L) for L525 to L51000 as given by Eq.~2!. This
plot shows the fast decay of the correction.
he
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leading term. There is no proof that the leading term of
expansion is 1/logL rather than (1/logL)k with kÞ1. How-
ever, the assumption that the leading term of the expansio
1/logL with b`50 is consistent with our numerical data, an
shows that the correction«(L) decays faster than an invers
power of logL @see Fig. 2~c!#. Finally, we note that the se
quence of maximum values off (a,L) for the two injection
points case plausibly extrapolates in the variable 1/logL as
L→` to a value ofdB close to the known value 1.64~Fig.
3!.

Thus our results suggest the intriguing possibility that
L→`, the small-current part off (a,L) is a horizontal line at
the valuedB , implying that in an infinite system the fracta
dimension of the subset contributing to small current isdB ,
independent of the value ofa. In this sense, the small
current probability distribution is apparently not multifracta
The ‘‘perfectly balanced’’ bonds which carry zero curre
have a fractal dimension equal todB @17#. Since these bonds
contribute to f (a,L) for a→`, the fact that their fractal
dimension isdB supports our hypothesis thatb`50. A re-
lated conclusion is thatqc50, or the negative moments o
the current do not exist in the infinite-size limit. In particula
it shows that the first-passage time for a tracer particle tr
eling in a flow field in a porous medium modeled by a pe
colation cluster diverges in an infinite system.

Moreover, the resultb`50 is supported by the following
argument. Ifb` were not zero, then the number of bon
carrying a small currenti would ben( i→0,L5`); i b`. This
behavior would indicate that the number of bonds carryin
small currenti approaches zero wheni→0, which seems
unlikely, since on an infinite backbone, the number of loo
is very large, andn( i→0,L5`) should be nonzero. Henc
b`50. This argument is consistent with the fact th
the total number of bonds carrying a nonzero curre
*0n( i ,L)d(log i), should diverge asL→`.

For large values of the current, the multifractal features
not change asL increases, suggesting that in the infinite-si
limit, there are essentially two different type of subsets. T
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FIG. 3. Maximum off (a,L), f max(L), in the the two injection
points case vs 1/log10L. The least square fit shown gives the e
trapolated value atL→` of dB close to the accepted value of 1.6
Also, we found that a log-log plot ofdB2 f max(L) vs L is remark-
ably straight, with slope.20.20.
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first set comprises the blobs of fractal dimensiondB , and the
second set comprises links carrying larger values of the
rent ~red bonds!, of fractal dimension ranging fromdred
51/n to dB .
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