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Optimal Paths in Disordered Complex Networks
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We study the optimal distance in networks, ‘opt, defined as the length of the path minimizing the
total weight, in the presence of disorder. Disorder is introduced by assigning random weights to the
links or nodes. For strong disorder, where the maximal weight along the path dominates the sum, we
find that ‘opt � N1=3 in both Erdős-Rényi (ER) and Watts-Strogatz (WS) networks. For scale-free (SF)
networks, with degree distribution P�k� � k��, we find that ‘opt scales as N���3�=���1� for 3< �< 4 and
as N1=3 for � � 4. Thus, for these networks, the small-world nature is destroyed. For 2< �< 3, our
numerical results suggest that ‘opt scales as ln��1N. We also find numerically that for weak disorder
‘opt � lnN for both the ER and WS models as well as for SF networks.
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optimal path connecting nodes A and B is the one for shortest path ‘min � lnN will also be valid for the optimal
Recently much attention has been focused on the topic
of complex networks which characterize many biological,
social, and communication systems [1–3]. The networks
can be visualized by nodes representing individuals, or-
ganizations, or computers and by links between them
representing their interactions.

The classical model for random networks is the Erdős-
Rényi (ER) model [4,5]. An important quantity charac-
terizing networks is the average distance (minimal
hopping) ‘min between two nodes in the network of total
N nodes. For the Erdős-Rényi network, and the related,
more realistic Watts-Strogatz (WS) network [6] ‘min

scales as lnN [7], which leads to the concept of ‘‘6 degrees
of separation.’’

In most studies, all links in the network are regarded as
identical and thus the relevant parameter for information
flow including efficient routing, searching, and transport
is ‘min. In practice, however, the weights (e.g., the quality
or cost) of links are usually not equal, and thus the length
of the optimal path minimizing the sum of weights is
usually longer than the distance. In many cases, the
selection of the path is controlled by the sum of weights
(e.g., total cost) and this case corresponds to regular or
weak disorder. However, in other cases, for example,
when a transmission at a constant high rate is needed
(e.g., in broadcasting video records over the Internet) the
narrowest band link in the path between the transmitter
and receiver controls the rate of transmission. This situ-
ation—in which one link controls the selection of the
path—is called the strong disorder limit. In this Letter we
show that disorder or inhomogeneity in the weight of
links may increase the distance dramatically, destroying
the ‘‘small-world’’ nature of the networks.

To implement the disorder, we assign a weight or
‘‘cost’’ to each link or node. For example, the weight
could be the time �i required to transit the link i. The
0031-9007=03=91(16)=168701(4)$20.00 
which
P

i�i is a minimum. While in weak disorder all
links contribute to the sum, in strong disorder one term
dominates it. The strong disorder limit may be naturally
realized in the vicinity of the absolute zero temperature if
passing through a link is an activation process with a
random activation energy �i and �i � exp��i�, where 
is the inverse temperature. Let us assume that the energy
spectrum is discrete and that the minimal difference
between energy levels is ��. It can be easily shown that
if  > ln2=��, the value of

P
i�i is dominated by the

largest term, �max. Thus if we have two different paths
characterized by the sums

P
i�i and

P
i�

0
i, such that

�max > �0max, it follows that
P

i�i >
P

i�
0
i [8].

To generate ER graphs, we start with zN links and for
each link randomly select from the total N�N � 1�=2
possible pairs of nodes a pair that is connected by this
link. TheWS network [6] is implemented by placing the N
nodes on a circle. Initially, each node i is connected with z
nodes i� 1; i� 2; . . . ; i� z and periodic boundaries are
implemented. Thus each node has a degree 2z and the
total number of links is zN. Next we randomly remove a
fraction p of the links and use them to connect randomly
selected pairs of nodes. When p � 1, we obtain a model
very similar to the ER graph.

To generate scale-free (SF) graphs, we employ the
Molloy-Reed algorithm [9] in which each node is first
assigned a random integer k from a power law distribu-
tion P�k > �kk� � � �kk=k0����1, where k0 is the minimal
number of links for each node. Next we randomly select
a node and try to connect each of its k links with
randomly selected k nodes that still have free positions
for links.

We expect that the optimal path length in the weak
disorder case will not be considerably different from the
shortest path, as found for regular lattices [10] and ran-
dom graphs [11]. Thus we expect that the scaling for the
2003 The American Physical Society 168701-1
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FIG. 1. Scaling plot of ‘opt on WS graphs for weak disorder as
a function ln�N=n0� for various values of p and z � 2. The
inset shows the log-log plot of n0 versus pz. The different
symbols represent different p values: p � 0:001 (4), p �
0:002 ( � ), p � 0:004 (�), p � 0:008 (5), p � 0:016 (+), p �
0:032 (�), p � 0:064 (), and p � 0:128 (�). Similar results
have been obtained for z � 1, 4, and 8. Those results scale
according to Eq. (4).
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path in weak disorder, but with a different prefactor
depending on the details of the graph.

In the case of strong disorder, we present the following
theoretical arguments. Cieplak et al. [12] showed that
finding the optimal path between nodes A and B in the
strong disorder limit is equivalent to the following pro-
cedure. First, we sort all M links of the network in the
descending order of their weights, so that the first link in
this list has the largest weight. Since the sum of the
weights on any path between nodes A and B is dominated
by a single link with the largest weight, the optimal path
cannot go through the first link in the list, provided there
is a path between A and B which avoids this link. Thus the
first link in the list can be eliminated and now our
problem is reduced to the problem of finding the minimal
path on the network of M� 1 links. We can continue to
remove links from the top of the list one by one until we
pick a link whose removal destroys the connectivity
between A and B. This means that all the remaining paths
between A and B go through this singly connecting or
‘‘red’’ link [13] and all these paths have the same largest
weight corresponding to the red link. To continue opti-
mization among these paths we must select the paths with
the minimal second largest term, minimal third largest
term, and so on. So we must continue to remove links in
the descending order of their weights unless they are red
until a single path between A and B, consisting of only red
links, remains. Since the assigning of weights to the links
is random so is their ordering. Hence the optimization
procedure in the strong disorder limit is statistically
equivalent to removing the links in random order unless
the connectivity between nodes A and B is destroyed.

At the beginning of this process, the chances of losing
connectivity by removing a random link are very low, so
the process corresponds exactly to diluting the network,
which is identical to the percolation model. Only when
the concentration of the remaining links approaches the
percolation threshold will the chances of removing a
singly connected red link [13] become significant, indi-
cating that the optimal path must be on the percolation
backbone connecting A and B. Since the network is not
embedded in space but has an infinite dimensionality, we
expect from percolation theory that loops are not relevant
at criticality [14]. Thus, the shortest path must also be the
optimal path.

We begin by considering the case of the ER graph that,
at criticality, is equivalent to percolation on the Cayley
tree or percolation at the upper critical dimension dc � 6.
For the ER graph, it is known that the mass of the
incipient infinite cluster S scales as N2=3 [4]. This result
can also be obtained in the framework of percolation
theory for dc � 6. Since S� Rdf and N � Rd (where df
is the fractal dimension and R the diameter of the clus-
ter), it follows that S� Ndf=d so for dc � 6, df � 4 [15]

S� N2=3: (1)
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It is also known [15] that, at criticality, at the upper
critical dimension, S� ‘d‘min with d‘ � 2, [15] and thus

‘min � ‘opt � S1=d‘ � N2=3d‘ � N�opt ; (2)

where �opt � 2=3d‘ � 1=3. We expect that the WS model
for large N and large p will be in the same universality
class as ER.

For SF networks, we can also use the percolation results
at criticality. It was found [16] that d‘ � 2 for � > 4,
d‘ � ��� 2�=��� 3� for 3< �< 4, S� N2=3 for � > 4,
and S� N���2�=���1� for 3< � 	 4. Hence, we conclude
that

‘min � ‘opt �
�
N1=3 � > 4;
N���3�=���1� 3< � 	 4:

(3)

To test these theoretical predictions, we perform numeri-
cal simulations in the strong disorder limit by randomly
removing links (or nodes) for ER, WS, and SF networks
and use the Dijkstra algorithm [17] for the weak disorder
case. We also perform additional simulations for the case
of strong disorder on ER networks using direct optimi-
zation [8] and find results identical to the results obtained
by randomly removing links [see Fig. 2(a)].

Results for weak disorder for WS graphs with different
p are shown in Fig. 1. We propose a scaling formula for
‘opt similar to the formula derived in [18,19] for the
minimal distance on the WS graphs with a different
rewiring probability p

‘opt �
n0�p; z�
n1�z�

F
�

N
n0�p; z�

�
; (4)

where n0�p; z� � 1=pz is the characteristic graph size at
168701-2
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FIG. 3. (a) The dependence of ‘opt on lnN for SF graphs in the
weak disorder case for various values of � shown on the graph.
The behavior of the asymptotic slope versus � shown as an
inset. (b) The dependence of ‘opt on ‘min. The curves from left
to right represent increasing values of � given in (a).
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FIG. 2. (a) The dependence of ‘opt on N1=3 for ER graphs for
the strong disorder case obtained by direct optimization (+) and
by randomly removing links (). The linear asymptote has a
slope of 3.27. Also shown are the successive slopes multiplied
by 50 for direct optimization (�) and for randomly removing
links (�). (b) Scaling plot of ‘opt in WS graphs for strong
disorder as a function �N=n0�

1=3 for various values of p and
z � 2. The symbols indicating values of p are the same as in
Fig. 1. The inset shows a log-log plot of n0 versus p for z � 2.
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which the crossover from large- to small-world behavior
occurs, n1�z� � z is a correction factor, and F�x� is the
scaling function

F�x� �
�
lnx x ! 1;
x x ! 0:

(5)

The scaling variable x � N=n0 indicates the number of
nodes with long-range links. As p ! 0, this quantity
scales as Npz. The quantity n0�p; z� � 1=pz indicates a
typical short-range neighborhood of a node with long-
range links. We can think of this graph as an ER graph
consisting of N=n0 effective nodes, each representing a
typical short-range chainlike neighborhood of size n0.
Thus we conclude that an optimal path connecting any
two nodes is proportional to ln�N=n0�, as in an ER graph,
times an average path length through a chain of short-
range links. This average path is proportional to the
length of this chain n0 and inversely proportional to the
average range n1�z� of a link in this chain. Ideally n1�z� �
z, but in reality it can significantly deviate from z due to
finite size effects. Figure 1 shows the scaled optimal path
‘opt=n0 versus the scaled variable N=n0 for z � 2 and
different values of p. The inset in Fig. 1 shows that n0 �
1=pz as p ! 0.

In contrast, for Eq. (4) to be in agreement with Eq. (2)
for the strong disorder limit, we have (see Fig. 2)

F�x� �
�
x1=3 x ! 1;
x x ! 0:

(6)

For large enough z and p ! 1, we recover the ER network
for which ‘opt does not depend on z. Thus we can assume
n0�1; z� � 1. Using similar scaling arguments as in the
case of weak disorder, we assume that as p ! 0, ‘opt �
z�2=3N, and hence n1�z� � z2=3.

For SF networks, the behavior of the optimal path in the
weak disorder limit is shown in Fig. 3 for different degree
distribution exponents �. Here we plot ‘opt as a function of
lnN. All the curves have linear asymptotes, but the slopes
depend on �,
168701-3
‘opt � f��� lnN: (7)

This result is analogous to the behavior of the shortest
path ‘min � lnN for 3< �< 4. However, for 2< �< 3,
‘min scales as lnlnN [20] while ‘opt is significantly larger
and scales as lnN [Fig. 3(b)]. Thus weak disorder does not
change the universality class of the length of the optimal
path except in the case of ‘‘ultrasmall’’ worlds 2< �< 3.

In contrast, strong disorder dramatically changes the
universality class of the optimal path. Theoretical consid-
erations [Eqs. (2) and (3)] predict that in the case of WS
and ER (Fig. 2) and SF graphs with � > 4, ‘opt � N1=3,
while for SF graphs with 3< �< 4, ‘opt � N���3�=���1�.
Figure 4(a) shows the linear behavior of ‘opt versus N1=3

for � � 4. The quality of the linear fit becomes poor for
� ! 4. At this value, the logarithmic divergence of the
second moment of the degree distribution occurs and one
expects logarithmic corrections, i.e., ‘opt � N1=3= lnN
[see Fig. 4(b)]. Figure 4(c) shows the asymptotic linear
behavior of ‘opt versus N���3�=���1� for 3< � 	 4.
Theoretically, as � ! 3, �opt � ��� 3�=��� 1� ! 0,
and thus one can expect for � � 3 a logarithmic depen-
dence of ‘opt versus N. Interestingly, for 2< �< 3 our
numerical results for the strong disorder limit suggest that
‘opt scales faster than lnN. The numerical results can be
fit to ‘opt � �lnN���1 [see Fig. 4(d)]. Note that the correct
asymptotic behavior may be different and this result
represents only a crossover regime. We obtain the same
results for the SF networks in which the weights are
associated with nodes rather then links.

In summary, we study the optimal distance in ER,WS,
and SF networks in the presence of strong and weak
disorder. We find that in ER and WS networks for strong
disorder, the optimal distance ‘opt scales as N1=3. We also
study the strong disorder limit in SF networks theoreti-
cally and by simulations and find that ‘opt scales as N1=3

for � > 4 and as N���3�=���1� for 3< �< 4. Thus, the
optimal distance increases dramatically in strong disor-
der when it is compared to the known small-world result
‘min � lnN and the ‘‘small world’’ nature for these net-
works is destroyed. Our simulations also suggest that for
168701-3
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FIG. 4. (a) The dependence of ‘opt on N1=3 for � � 4. (b) The dependence of ‘opt lnN on N1=3 for � � 4. (c) The dependence of
‘opt on N���3�=���1� for 3< �< 4. (d) The dependence of ‘opt on ln��1N for � 	 3.
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2< �< 3, ‘opt scales as ln��1N, which is also much
faster than the ‘‘ultrasmall world’’ result ‘min � ln�lnN�
[20]. The same scaling as for ‘opt applies for distances on
the minimum spanning tree [21], which behave similarly
to paths in strong disorder. We also find numerically that
in weak disorder ‘opt � lnN in all types of networks
studied.
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