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During slow inflation of lung lobes, we measure a sequence of short explosive transient sound waves called
‘‘crackles,’’ each consisting of an initial spike followed by ringing. The crackle time series is irregular and
intermittent, with the number of spikes of size s following a power law, n(s)}s2a, with a52.7760.05. We
develop a model of crackle wave generation and propagation in a tree structure that combines the avalanchelike
opening of airway segments with the wave propagation of crackles in a tree structure. The agreement between
experiments and simulations suggests that ~i! the irregularities are a consequence of structural heterogeneity in
the lung, ~ii! the intermittent behavior is due to the avalanchelike opening, and ~iii! the scaling is a result of
successive attenuations acting on the sound spikes as they propagate through a cascade of bifurcations along
the airway tree. @S1063-651X~99!13810-8#

PACS number~s!: 87.19.2j, 43.25.1y

I. INTRODUCTION

There is much current interest in the puzzling physics
associated with the lung @1–6#. In particular, the short ‘‘ex-
plosive’’ transient waves, called crackles, are not fully un-
derstood. Forgacs @7# proposed that crackles are associated
with the sudden opening of closed airways. The discrete
emission of crackles from the lung tissue has been modeled
as a stress-relaxation quadrupole @8#, and this work has re-
ceived experimental support @9#. Also, gas trapping during
inflation has been found to correlate with crackle sound in-
tensity @10#. Characteristics of individual crackles have long
been used as diagnostic tools @11–13#. However, in spite of
growing recent interest @12#, there has been no detailed sta-
tistical analysis of crackle sound. Here, we analyze lung
sounds collected under conditions that promote crackle gen-
eration. We find that the distribution of crackle intensities
follows a power law, which we interpret using a model of
crackle generation and propagation in a tree structure mim-
icking the bronchial geometry.

II. EXPERIMENTAL DATA

We measure the sound pressure field generated by airway
openings in isolated dog lung lobes. We cannulate the main
bronchus of the lobes, and place the lobes in an airtight
chamber with the cannula attached to a metal tube which is
led through the lid of the chamber. We inflate the lobes in
120 s from the collapsed state to total lobe capacity by cre-
ating a steadily increasing negative pressure in the chamber
using a suction pump. The inlet of the main bronchus and the
outlet of the suction pump are connected to separate me-
chanical low-pass filters to minimize environmental and
pump noise in the acoustic measurements. To minimize the
effects of possible reflections from the low-pass filter back to

the microphone, we use a 4-m-long uniform tube with no
change in its characteristic impedance. We detect the sound
at the inlet of the main bronchus with a low-noise micro-
phone, amplified and sampled at a rate of 22 050 Hz. We
record chamber pressure with respect to atmospheric pres-
sure ~transpulmonary pressure! and airflow to the lobes
sampled at a rate of 80 Hz. Pressure and airflow were mea-
sured using a Valydine MP-45 transducer (50 cm H2O) and
a screen pneumotachometer ~resistance of 5 cm H2O/l/s) at-
tached to another Validyne MP-45 transducer (2 cm H2O),
respectively. We collect a total of 12 pressure-volume curves
and 12 sound pressure time series during the slow inflation
of 12 separate lobes. At the beginning of inflation, the sound
pressure time series display a discrete set of crackles—
intermittent pressure transients, each consisting of an initial
negative spike followed by a short ringing @see Fig. 1~a!#.
When the pressure-volume curve reaches its lower knee,
massive airway openings generate dense and overlapping
wave packets. The envelope of the time series gradually de-
creases with inflation, indicating first the generation of
coarse crackles, then later of fine crackles @11#. To charac-
terize the statistical features of the irregular crackle time se-
ries, we developed a moving window algorithm that detects
and measures the size s of the negative spikes in the time
series. An example of the spike time series is shown in Fig.
1~b!. The overall distribution n(s), including data from all
12 inflation experiments, follows a power law behavior,
n(s)}s2a, with an exponent a52.7760.05 @Fig. 1~c!#.
Also, in each of the 12 different inflation experiments, the
power law distribution extends over nearly two orders of
magnitude with similar exponents ~with an average a
52.7660.19).

III. MODEL FORMULATION

To interpret the power law distribution of the spikes, we
develop a model of crackle wave generation and propagation
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in a tree structure. When the lungs deflate to very low vol-
umes, many peripheral airways close up by forming a liquid
bridge between the collapsed airway walls @14#. Experiments
on flexible tube models and in isolated lungs indicate that the
opening of a single airway can be characterized by a critical
opening threshold pressure P @15# . If the pressure at the inlet
of an airway exceeds this threshold, the airway opens. Thus,
we model the airway tree with a binary tree in which a
threshold pressure P i , j is assigned to each airway
(i , j), where i is the generation number (i51,•••,N) and
jP@1,2i# . The distribution of P i , j is broad @6# and will be

examined below. We assume that at time t50, all airways
are initially blocked. The inflation is simulated by applying
an external pressure PE at the top of the tree. PE is initially
assigned the value P0,0 , the threshold pressure of airway
~0,0!. Since an airway opens when the pressure in its parent
equals or exceeds its critical threshold pressure, the airway
~0,0! now opens and its pressure is set equal to PE . Next, the
two daughter airways ~1,0! and ~1,1! are checked; if PE
>P1,0 then ~1,0! opens and if PE>P1,1 then ~1,1! also opens.
This opening process is then continued sequentially down
the tree until no airway is found with P i , j<PE . This process
defines a cascade or avalanche of opening @5#. The inflation
is then continued by gradually increasing PE in small incre-
ments until the entire tree becomes open. We next describe
how crackle waves are generated in individual airways and
how they propagate up the tree. Before the opening of an
airway occurs, a large pressure gradient builds across the
fluid plug that blocks the segment. When PE reaches P i , j of
the airway, the meniscus of the fluid plug is either rapidly
pushed out of the segment or disrupted. This process is fast
@15# and the pressure gradient is sufficiently steep to generate
a transient sound wave—a crackle. We assume that this
sound wave can be represented as a single spike with an
amplitude s i , j proportional to the local threshold pressure
P i , j . This sound wave travels in both directions, but we are
only interested in the wave traveling toward the root of the
tree. A wave traveling up in a daughter branch will be at-
tenuated due to several factors. Here we consider attenuation
due to a change in geometry at a bifurcation. Based on con-
tinuity of pressure and volume velocity at the bifurcation, the
original pressure spike amplitude s i , j will be attenuated as
@16#

s i , j
1

5

2A i , j

A i , j1A i , j111A i21,j /2
s i , j5b i , js i , j , ~1!

where s i , j
1 is the pressure spike amplitude transmitted from

the branch (i , j) into its parent branch (i21,j /2). The other
daughter of the parent branch is denoted by (i , j11), and A
denotes the cross-sectional area of a branch. The factor b i , j is
the acoustic attenuation coefficient that depends on the local
geometry. When the wave passes through a cascade of i bi-
furcations to reach the root, the total attenuation is obtained
by successively applying the above equation at each bifurca-
tion. When an avalanche is initiated, each segment partici-
pating in the avalanche generates a crackle wave locally,
which is then propagated up the tree and the waves are su-
perimposed at the root to simulate the measured spike time
series. We can obtain an analytical distribution of the sound
pressure spikes, if we also assume that b i , j5b (b5a con-
stant throughout the tree!, and all P i , j51. Hence all the local
s i , j51. In this case, a wave initiated at generation i will pass
i bifurcations to arrive at the root with an amplitude s5b i.
Thus, the distribution n(s) will be taking discrete values of
b0,b1, . . . ,bN. Since at generation i we have 2 i segments
each sending a wave up the tree, the corresponding number
of spikes are 20,21, . . . ,2N. On a log-log graph, this defines
a power law. By normalizing the histogram with the bin size,
b i21

2b i, the exponent of the tail of the probability distribu-
tion n(s) is

FIG. 1. ~a! Time series of raw sound data as well as lung vol-
ume, both as functions of inflation time. Sound pressure is in arbi-
trary units, and lung volume is normalized to total lung capacity at
the end of inflation. The inset is a zoom to a short segment of the
sound wave, showing first a smaller, then a larger crackle wave—
both consisting of an initial negative spike followed by a short
ringing. ~b! Time series of the normalized negative spikes for ex-
perimental data in ~a!. ~c! Log-log plot of the size distribution n(s)
of spike amplitudes based on data from 12 independent inflations.
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ln~2/b !

ln~b !
. ~2!

IV. NUMERICAL AND ANALYTICAL RESULTS

Next, we examine numerically how n(s) and a change
when we relax some of the simplifying assumptions. In Fig.
2, we show the effect of distributing P i , j uniformly between
0 and 1 independent of generation number. The distribution
n(s) is now a staircase, and the overall slope is sensitive to
b. However, we find good agreement between Eq. ~2! and the
exponent of the envelope of the distributions ~see inset!.
When the value of b is not constant but has a certain prob-
ability distribution with mean b̄ and standard deviation s ,
the staircase gradually disappears, but a does not depend on
s , only on b̄ . Figure 3~a! shows how n(s) depends on the
system size for N510, 14, and 18. Increasing the number of
generations increases the saturation value of n(s) and de-
creases the crossover spike size s3 , and hence the scaling
region of n(s) is shifted toward lower values of s. However,
the exponent a remains the same for all N. Assuming that
P i , j and hence the wave amplitudes s i , j are uniformly dis-
tributed, we can derive the distribution function for the wave
amplitude at the root as follows. Let us denote the probabil-
ity by n i(s) that a wave initiated at generation i has a size s.
Since s i , j are uniformly distributed between 0 and 1, n i(s) is
also uniformly distributed, but between 0 and b i. Due to
normalization of the distribution, the value of this probability
is b2i. We are interested in the probability of finding a spike
size s at the root that can come from any generation i
51, . . . ,N . This probability, n(s), will be the weighted av-
erage of the probabilities n i(s) for i51, . . . ,N . The weights
are the relative number of segments at each generation, i.e.,
2 i/Q where Q520

121
1 . . . 12N. This again defines a

power law on the log-log graph of n(s) and s with a slope a
given by Eq. ~2!. Summing the geometric series, we obtain a
closed form approximation,

n~s !5

1

bN f S s

bND , ~3!

where f (x) is a scaling function

f ~x !5H
1

a21
if x,1,

x2a

a21
otherwise.

~4!

Equation ~4! implies that the crossover from a flat to a
power-law behavior of n(s) occurs at s35bN with a satura-
tion value of b2N. Thus, rescaling s by bN and n(s) by b2N,
we can collapse all the curves in Fig. 3~a! to a single master
distribution. Indeed, Fig. 3~b! demonstrates that the distribu-
tions for different N fall on a single curve. The scaling func-
tion is in good agreement with the numerical simulations.

V. DISCUSSION

Several assumptions have been made in our model of
crackle generation and propagation. First, the airway seg-
ments have been assumed to be rigid tubes. Flexible airway

FIG. 2. The distribution n(s) of spike sizes in a binary tree
model of N515 generations for different values of the attenuation
b. The threshold pressure distribution is uniform. The inset com-
pares the analytical exponent ~solid line! and the exponent esti-
mated from the envelope of the distributions.

FIG. 3. ~a! The distribution of spike sizes as a function tree size
N. The mean attenuation b̄ is 0.6 and the threshold pressure distri-
bution is uniform. ~b! Renormalization of the spike size distribu-
tions corresponding to N510, 14 and 18 shown in ~a!. The open
circles denote the analytical scaling function.
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walls would be important in describing the mechanism of
ringing @see Fig. 1~a!# which we do not analyze in this study.
Second, we also assume that the only mechanism that pro-
duces attenuation is that of a wave passing through a bifur-
cation. Attenuation due to energy dissipation in the vis-
coelastic airway walls is not likely to be important. The
reason is that the spikes carry high-frequency energy for
which the airways behave nearly like rigid pipes. Addition-
ally, attenuation in air is even less than attenuation in tissue.
Following the generation of a wave, we assume that a single
wave travels up the tree and that wave reflection does not
affect the spike size distribution. When the original wave
passes the first bifurcation toward the root, it will be re-
flected. The reflected wave will be re-reflected from the first
bifurcation downward and this second reflection will follow
the original wave. The secondary waves, however, do not
affect the spike size distribution. The lengths of the small
airways range from 0.1 to 0.3 cm. The sound wave speed in
small airways is 268644 m/s @17#. An upper limit for the
time difference between the original and the reflected wave
is (0.3 cm)/(200 m/s)50.000015 s. The smallest time dif-
ference between two spikes we can identify is only
2/22050'0.0001 s. Thus, the first reflection cannot be sepa-
rated from the original wave going upward. There should be
at least six consecutive reflections to achieve a time delay
that can be reliably measured with our system. At a bifurca-
tion, the reflected energy would be less than 35% of the
incident energy. After 6 reflections, the amplitude decreases
to below 0.2% of the original wave amplitude. Numerical
simulations show that reflections having amplitudes up to
10% of the original waves do not influence the scaling be-
havior. We assume that airways open via avalanches. This is
important since, as we explain below, it leads to the inter-
mittent large pressure spikes in the crackle time series. These
large pressure spikes are generated when pressure gradually
builds up in front of a segment due to a local high threshold
pressure. When this threshold pressure is overcome by the
external pressure field, the segment opens, initiating an ava-
lanche in which many segments below the first segment se-
quentially open. Every segment that opens in an avalanche
generates a crackle. The crackle amplitudes that are sequen-
tially generated within an avalanche must be on average
smaller and smaller as they come from deeper regions and
the crackle waves are attenuated by more and more bifurca-
tions. This process leads to the observed intermittent behav-
ior of the spike time series. An important assumption regard-
ing the model structure is that the tree is symmetric. Using
similar arguments as above, one can show that the scaling
behavior does not change if the binary tree is incomplete,
i.e., asymmetric. In a symmetric tree, the number of branches
at generation i is 2 i whereas in an asymmetric tree the num-
ber of branches at generation i is a i, where a,2. Thus, the
exponent in Eq. ~2! changes to a5ln(a/b)/ln(b) where the
asymmetry parameter takes the value of a52 for a symmet-
ric tree. Physiologically realistic asymmetry is obtained for
a51.95, which decreases a by 5%. Another important as-
sumption is that the threshold pressures are independent of
generation. The effect of introducing a distribution for P i , j
that slightly depends on the generation number to reflect the
fact that threshold pressures are, on average, an increasing
function of decreasing diameter @15# ~and hence of increas-

ing generation number!, is to increase a by no more than
10%. However, the scaling behavior is again not affected.
Thus, we find that it is the tree structure that produces scal-
ing behavior in the crackle size distribution. To further test
that the origin of scaling in lung crackle sound is the tree
structure of the airways, we measure the bubbling sound of a
gaseous control fluid ~sparkling wine!. Using a similar setup,
we place the microphone about 2 cm above the surface of the
control fluid in a glass. We apply the same spike detection
algorithm to the sound pressure to identify the spike time
series shown in Fig. 4~a!. The spike time series from the
control fluid is qualitatively different from that in Fig. 1~b!.
The distribution of the spike sizes in Fig. 4~b! is similar to a
log-normal distribution unlike the power law distribution
found for the lung @see Fig. 1~c!#. When we use the local
sound spike time series of the control fluid as input to our
tree model, the sound pressure distribution at the root of the
tree is indistinguishable from that of the real lung sound
distribution @see dashed line in Fig. 4~b!#. Thus, the tree
structure acts as a strong acoustic filter such that the sound
pressure distribution at the root becomes a power law inde-
pendent of the nature of the locally generated sound.

VI. CONCLUSION

With regard to the physiological implications, rescaling
the experimental data to fit the scaling function of Eq. ~2!

FIG. 4. ~a! Time series of sound pressure spikes of bubbling
champagne. ~b! Solid line shows the log-normal-like distribution of
the time series in ~a!. Dotted line is the distribution after passing the
time series in ~a! through the tree structure.
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requires that b50.65 and N515, whereas the value of b
estimated from independent morphometric airway dimen-
sions is 0.62, which is close to our estimate obtained from
dynamic sound measurements. The tree size N515 is also a
reasonable estimate for the number of airway generations
initially closed in a collapsed lung @18#. The quantitative
agreement between the spike time series from the experi-
ments and simulations suggests that ~i! the irregularities are a
consequence of the heterogeneity in the threshold pressures
and airway structure of the lung, ~ii! the intermittent behav-
ior of the crackle spike time series is due to the avalanchelike
opening of the airway segments, and ~iii! the scaling behav-
ior is a result of the successive attenuations acting on the
sound spikes as they propagate through a cascade of bifur-
cations along the airway tree. Finally, we note that the char-

acteristics of crackles have long been used as diagnostic
tools to differentiate among a variety of pulmonary diseases.
However, the use of crackles in diagnosis has been based on
medical experience collected over many years. Our results
here provide a physical understanding of crackles and will
allow us to estimate the average diameter of the airways
where crackles come from. This has potential clinical impor-
tance, since it may allow the localization of closed airways,
and, hence, of local edema or inflammation of tissue.
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