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Scale-Independent Measures and Pathologic Cardiac Dynamics
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We study severalscale-independentmeasures of cardiac interbeat interval dynamics defined through
the application of the wavelet transform. We test their performance in detecting heart disease using a
database consisting of records of interbeat intervals for a group of healthy individuals and subjects with
congestive heart failure. We find thatscale-independentmeasures effectively distinguish healthy from
pathologic behavior and propose a new two-variable scale-independent measure that could be clinically
useful. We compare the performance of a recently proposed scale-dependent measure and find that the
results depend on the database analyzed and on the analyzing wavelet. [S0031-9007(98)07110-5]

PACS numbers: 87.10.+e, 87.80.+s, 87.90.+y
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The regulation of the cardiac rhythm is a highly comple
process [1,2]. Such complexity manifests itself throug
the nonstationarity and nonlinearity of interbeat interva
sequences. The study of the statistical properties of the
interbeat interval sequences has attracted the attention
researchers in a wide range of fields [3–10]. The goal
many of these studies is to uncover statistical quantiti
that (i) will enable the identification of the mechanism (o
class of mechanisms) responsible for the scaling propert
of the fluctuations in the cardiac rhythm, and (ii) wil
provide means of diagnosis and prognosis of heart disea

Here we study the effectiveness of scale-independe
measures—the exponents characterizing the scaling
the partition function of the wavelet coefficients of the
heartbeat records with the wavelet scalea—in distin-
guishing healthy cardiac dynamics from interbeat inte
val dynamics in congestive heart failure. We compare t
performance of thesescale-independentmeasures with the
performance of ascale-dependentmeasure [8]. Some
pathological conditions may alter the statistical characte
istics of cardiac dynamics at a specific scale or range
scales [10]. In such cases, scale-dependent measures
be fruitfully used by selecting the adequate temporal sca
However, we show that if not properly selected,scale-
dependentmeasures may reflect characteristics specific
the subject or to the method of analysis instead of unive
sal, subject-independent characteristics.

The nonstationary character of interbeat interval recor
for healthy or sick subjects requires the application o
methods that can appropriately treat such nonstationa
ties. Recent studies show that the wavelet transform [1
16] can remove effects due to nonstationarities present
physiological time series [7–10,12–16]. The coefficien
of the discrete wavelet transform are defined as

Wasnd ; a21
MX
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ticssssi 2 ndyaddd . (1)

Hereti is the interval between beatsi andi 1 1, c is the
generating wavelet,a is the scale of the wavelet,M is the
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number of points in the time series, andn is the beat for
which the coefficient is calculated. For a fractal signal
the sumZq of the qth moments of the coefficients of the
wavelet transform scale as [15–17]

Zqsad ;
X

i

jWasidjq , atsqd, (2)

where the sum is only over the maxima ofjWaj. In anal-
ogy with what occurs in scale-free physical systems, i
which phenomena described at a coarse-grained level
the same mechanisms are characterized by the same s
ing exponents, we assume that the scale-independent m
sures,tsqd, depend only on the underlying mechanisms o
heart rate regulation. Hence, the exponentstsqd should
take roughly the same values for healthy individuals [19]
On the other hand, we expect major changes in the mech
nisms of heart rate regulation due to pathological cond
tions, such as congestive heart failure, to lead to chang
in the values of the exponents (see Fig. 1). These a
sumptions are supported by previous studies [6] and b
our findings.

We analyze a standard database containing 24 h recor
of interbeat intervals (corresponding to approximately
105 beats) for 18 healthy subjects and 12 heart failur
subjects [9]. As the analyzing wavelet, we use the thir
derivative of the Gaussian [15,16,18]. Nocturnal record
are likely to be less affected by the influence of differen
activity levels, and there is evidence that some statis
tical properties are different for diurnal and nocturna
sequences of healthy subjects [7,10]. Hence, w
analyze the nocturnal fraction of each of the records—
corresponding to the 6 h from midnight to 6 a.m., or
approximately 20 000 beats—instead of the mixture o
diurnal and nocturnal records [8]. To further test the per
formance of the methods studied, we divide every recor
into subrecords of length 5000 beats (N ­ 75 healthy
subrecords, andN ­ 48 heart failure subrecords).

Since the important information regarding the dynamic
is contained in the value of the exponents from the powe
© 1998 The American Physical Society
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FIG. 1. Log-log plot of the dependence ofZ2sad on scale
a for a healthy individual and a subject with congestive
heart failure. Good power law scaling is observed for scale
a . 5. Note that the exponenttsq ­ 2d of the power law is
significantly different for the two cases:tsq ­ 2d ­ 20.80 6
0.05 for the healthy record, andtsq ­ 2d ­ 20.40 6 0.05 for
the congestive heart failure record. The results obtained f
Z2sad are consistent with results obtained in Ref. [6] throug
a detrended fluctuation analysis (DFA). The exponenta of
the DFA is equal toftsq ­ 2d 1 3gy2 [6]. Our independent
estimates ofa ø 1.1 for healthy records anda ø 1.3 for con-
gestive heart failure are in agreement with the results of [6].

law scaling ofZq, we calculate the exponents from leas
squares fits of the empirical data. We find that th
best separation between the healthy and heart failu
groups is obtained forq ­ 2 and 5. Table I shows
the average value of the exponents for the healthy a
heart failure groups. We perform a Student’st-test and
verify that the differences between the mean values a
statistically significant [20]. Figure 2a shows the values o
the exponents for each of the subrecords in the database
The robust degree of separation between the two grou
suggests that our results might have a potential clinic
application (see also Ref. [21] for further applications o
scale-independent measures).

We quantify the performance of the different method
using two measures. First, we consider for the two grou

TABLE I. Average and standard error of our estimates o
the exponentstsq ­ 2d, tsq ­ 5d, and g, and of the scale-
dependent measure2 logs2

wav sa ­ 24d for the healthy (N ­
75 datasets) and heart failure (N ­ 48 datasets) groups in noc-
turnal conditions for subrecords 5000 beats long. A Studen
t-test indicates that the differences in the means for healt
vs heart failure for a given measure are significant to th
p , 1028 level [20].

Healthy Heart failure

tsq ­ 2d 20.71 6 0.01 20.36 6 0.03
tsq ­ 5d 20.45 6 0.03 20.09 6 0.04

g 1.37 6 0.02 1.76 6 0.03
2 log s2

wav sa ­ 24d 1.59 6 0.03 2.15 6 0.05
s
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h ;
smH 2 mCHFd2

s
2
H 1 s

2
CHF

, (3)

wheremH and mCHF are the means of the scaling expo
nents of, respectively, healthy and congestive heart fa
ure cases, andsH and sCHF are the respective standard
deviations. For a good separation between the valu
of the measure for the two cases—difference in mea
much larger than standard deviations—h ¿ 1. Next, we
consider the “statistical distance" from the means of th
“boundary” that minimizes incorrect classification for both
groups [22]

d2 ­

√
mH 2

sHpmCHF 1sCHF pmH

sH1sCHF

sH

!2

. (4)

Table II shows the values ofh and d2 for the meth-
ods considered. The best discrimination is obtained f
tsq ­ 2d.

We next ask if we can improve discrimination by using
multivariate measures. Figure 3 shows a scatter plot
the phase spacessstsq ­ 2d, tsq ­ 5dddd for the subrecords
in the database. Clear separation between healthy a
heart failure subjects is apparent. An estimate of th
performance of the two-variable measure leads toh ­
4.19 [23], which is the highest value of the four method
discussed here (Table I).

Next we compare the performance of our scale
independent method with the scale-dependent measure
Ref. [8], which appears to perfectly classify every subje
in an older version (N ­ 27 subjects) of the standard
database [9] as either belonging to a healthy group or to
heart failure group. Reference [8] studies the variance
the coefficients of the wavelet transform

s2
wav sad ;

a
M

MyaX
j­1

fW̃as jd 2 kW̃as jdlg2. (5)

Here k· · ·l represents a time average, andWas jd ;
a1y2Ws jad [24]. The variances2

wav is related to the par-
tition function Z2. Note that (i) there is no normaliza-
tion by the number of coefficients taken in the calculatio
of the partition functionZ2 [15,16], and (ii) the average
value of the coefficients of the wavelet transformkW̃as jdl
is approximately zero, so we can write

s2
wav sad , a2Z2sad . (6)

From (6) it follows that

s2
wav sad , ag , (7)

with g ­ 2 1 tsq ­ 2d.
Reference [8] reports that the values ofs2

wav separate
into two nonoverlapping groups for a limited range o
scales, 16–32 beats. Figure 2d shows the values
2 logs2

wav sa ­ 24d for all the subrecords in the databas
[9], and we note that the claim of Ref. [8] does not hold
Furthermore, comparison of the values ofh (Table II
suggests that the scale-independent methods presen
2389
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FIG. 2. (a) Exponenttsq ­ 2d calculated from the nocturnal subrecords in the standard database 9 by least squares fits to
dependence of logZ2 on loga. (b) Exponenttsq ­ 5d calculated from the nocturnal subrecords in the database by least sq
fits to a linear dependence of logZ5 on loga. (c) Exponentg calculated from the nocturnal subrecords in the database by l
squares fits to a linear dependence ofs2

wav on loga. All estimates of the exponents were obtained from fits to scalesa . 8.
(d) Values of2 logs2

wav sa ­ 24d for the nocturnal subrecords in the database. We also show in the figures the average valu
standard deviations of the exponents for the two groups (Table I). Table II compares the performance of the different meth
re
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failure than the scale-dependent method of Ref. [8].

Finally, we test the two crucial assumptions of th
method of Ref. [8] by asking the questions: Does the ran
of scales where good discrimination is found depend o
(i) the particular group of subjects considered and (ii) on
the analyzing wavelet? To test (i), we study the night-tim
records in the database with the Haar wavelet (used in [8
As shown in Fig. 4a, we find that there isnorange of scales
for which there is absolute separation between the tw
groups. To test (ii), we study the same records but use t
third derivative of the Gaussian as the analyzing wavel
(Fig. 4b). It is clear that there isno single scale for which
the healthy and heart failure groups are clearly separat
These results suggest that the method reported in Ref.
is sensitive to aspects that areparticular to a training set
of subjects and to a particular analyzing wavelet.

The ambiguity regarding the appropriate range of scal
for which discrimination between healthy and patholog
cal groups is optimized highlights an important problem

TABLE II. Comparison of the performance of the different
one-variable measures discussed in the text. The larger
value of h or d2 the better the discrimination provided by the
method; see Eqs.(3) and (4).

Group m s h d2

tsq ­ 2d Healthy 20.71 0.06
Heart failure 20.36 0.20 2.81 1.81

tsq ­ 5d Healthy 20.45 0.25
Heart failure 20.05 0.14 1.95 1.05

g Healthy 1.37 0.15
Heart failure 1.76 0.21 2.28 1.17

2 log s2
wav sa ­ 24d Healthy 1.59 0.30

Heart failure 2.15 0.36 1.43 0.72
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with such an analysis: The values ofs2
wav or Zq at par-

ticular scales are importantly influenced by factors that a
particular to each individual rather than with “universal”
scaling behavior due to the dynamics of cardiac rhyth
regulation. On the other hand, the results of Figs. 2 an
suggest that measures which probe universal aspects o
dynamics of heart beat regulation can perform well wit
out the ambiguity of such scale-dependent measures ba
on nonuniversal aspects of the dynamics. Moreover, sin
scale-independent measures—the exponents—do no
quire a specific range of scales to be set, we might exp

-1.2        -1.0       -0.8       -0.6       -0.4       -0.2 0.0
τ(q=2)

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

τ(
q=

5)

Healthy
Heart Failure

FIG. 3. Two-variable measure for detection of healthy a
heart failure subrecords. We define a two-dimensional sp
to characterize the interbeat interval subrecords of individua
The coordinates of this space aretsq ­ 2d andtsq ­ 5d. The
continuous lines shown quantify the linear correlations betwe
the values oftsq ­ 2d andtsq ­ 5d for the two groups. The
dashed line, which bisects the two linear fits, provides go
separation between healthy and heart failure subrecords.
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FIG. 4. (a) Test of the results of Ref. [8] for the database [9
using the Haar wavelet. The arrows indicate the range of sca
identified in [8] as providing “100% accuracy” in separating
the healthy and heart failure groups. However, we find overla
between healthy and heart failure groups when the database
expanded to include more subjects. (b) Log-log plot ofs2

wav
vs scalea for the same subjects, using the third derivative o
the Gaussian as the analyzing wavelet. It is visually appare
that the data are approximately linear in the log-log plot with
different exponents for the healthy and heart failure groups. O
the other hand, contrary to Ref. [8], we find no scale for whic
a clear separation between the two groups is visible.

them to continue to perform well on new “out of sample”
records [21].
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