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Econophysics: can statistical physics contribute to
the science of economics?
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Abstract

We address a current question in econophysics: Are fluctuations in economic indices correlated? To this end, we analyze
1-minute data on a stock index, the Standard and Poor index of the 500 largest stocks. We extend the 6-year data base studied
by Mantegna and Stanley by including the 13 years 1984–1996 inclusive, with a recording frequency of 15 seconds. The total
number of data points in this 13 years period exceed 4.5 million, which allows for a very detailed statistical analysis. We find
that the fluctuations in the volatility are correlated, and that the correlations are well described by a power law. We also briefly
describe some recent scaling results in economics, specifically some surprising features that appear to be common to the growth
rates of business firms, countries, research budgets, and bird populations.  1999 Elsevier Science B.V. All rights reserved.

1. Introduction

We begin by pointing out that economics, as a
science, is not well understood. This seems to be
almost generally accepted; in fact, the cover article
of the 23 August 1997 issue of The Economist was
actually entitled “The Puzzling Failure of Economics”.

What does this new field of econophysics have to
offer to any solution to this puzzle? We begin with
an assumption that I and my coworkers first encoun-
tered years ago when we worked on critical phenom-
ena: “Everything depends on everything else”. A care-
ful analysis of any system involves studying the prop-
agation of correlations from one unit of the system to
the next. We learned that these correlations propagate
both directly and indirectly.

Our approach is to begin empirically, with real data
that we can analyze in some detail. In economics, we
have available to us a great deal of real data and, since

1 E-mail: hes@miranda.bu.edu.

we have at our disposal the tools of computational
physics and the computing power to carry out any
number of approaches, this abundance of data is to our
great advantage. For us, studying the economy means
studying a wealth of data on a well-defined complex
system. Today we are going to look at some examples
of scale-invariant correlations that are of interest to
social scientists.

At one time, it was imagined that the “scale-free”
phenomena are relevant to only a fairly narrow slice
of physical phenomena [1]. However, the range of
systems that apparently display power law and hence
scale-invariant correlations has increased dramatically
in recent years, ranging from base pair correlations
in noncoding DNA [2,3], lung inflation [4,5] and in-
terbeat intervals of the human heart [6–9] to com-
plex systems involving large numbers of interact-
ing subunits that display “free will”, such as city
growth [10–12], animal behaviour [14–19], and even
economics [20,21]. In particular, economic time se-
ries, as, e.g., stock market indices or currency ex-
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change rates depend on the evolution of a large number
of strongly interacting systems far from equilibrium,
and belong to the class of a complex evolving systems.
Thus, the statistical properties of financial markets
have attracted the interests of many physicists [22–33].
Methods originating in statistical physics have been
proven useful in analyzing financial indices. They
are also used to construct new models for the pric-
ing of derivatives and the assessment of the involved
risk [25].

The recent availability of very high frequency data
allows to study economic time series with a high ac-
curacy on a wide range of time scales varying from
less than 1 minute up to more than 10 years. Conse-
quently, a large number of methods known from sta-
tistical physics have been applied to characterize the
time evolution of stock prices and foreign exchange
rates [22–26,30–33]. It turns out that the distributions
of the increments of economic time series, both in
stock market indices and foreign currency exchange
rates, are nearly symmetric and have strong “leptokur-
tic” wings [34,26]. Index increments as a function of
time show only weak correlations on short time scales
below 10 minutes [34,35], which seemingly makes
them fundamentally different from well known exam-
ples of complex dynamic systems in physics such as,
e.g., turbulent flow where power law correlations on
long time scales are commonly observed [36].

The situation is different for the volatility, i.e.,
the market fluctuations averaged on a suitable time
interval. There is long time persistence much larger
than the correlation time in volatility [37]. Volatility
is the key input of virtually all option pricing models,
including the classic Black and Scholes [38] and Cox,
Ross, and Rubinstein [39] binomial models that are
based on estimates of the asset’s volatility over the
remaining life of the option. So to understand the
dynamics of the volatility has very important practical
reason.

Here, we quantify long range power law correla-
tions in the volatility of the S&P 500 stock index and
report an occurrence of a cross-over phenomena of this
long range correlation. Furthermore, we discuss the
distribution of the volatility, and show that it can be
fitted very well by a log-normal distribution.

2. Quantification of correlations in S&P 500

2.1. Data description and detrending

The S&P 500 index, an index of the New York
Stock Exchange, consists of the 500 largest companies
in the US. It is a market-value weighted index (stock
price times number of shares outstanding), with each
stock’s weight in the index proportionate to its market
value. The S&P 500 index is one of the most widely
used benchmarks of US equity performance. Our data
cover 13 years (from Jan. 1984 to Dec. 1996) with a
recording frequency of 15 seconds interval. The total
number of data points in this 13 years period exceed
4.5 million, which allows for a very detailed statistical
analysis.

The S&P 500 index Z(t) from 1984 to 1996 tends to
increase constantly on a semi-log graph except during
crashes, e.g., October 1987 and May 1990. Since the
standard deviation of Z(t +1t)−Z(t) is proportional
to the price level, we take the logarithmic of the index
as everyone does. We define the forward change

G(t) ≡ loge Z(t + 1t) − loge Z(t), (1)

where 1t is the time-lag (set to 1 minute in the
correlation study).

We only count the number of minutes during the
opening hours of the stock market, and remove the
nights, weekends and holidays from the data set, i.e.,
the closing and the next opening of the market is
continuous.

The absolute value of G(t) describes the amplitude
of the fluctuation. |G(t)| is, by definition, always
positive, and there are no obvious global trends visible,
which is due to the logarithmic difference, i.e., the
relative increment on the original index Z(t). The
large values of Z(t) correspond to the crashes and
big rallies of the index. It is known in the financial
literature that the volatility varies in time [40], as
expected the |G(t)| quantity also fluctuates in time.

It is known that there exits intra-day patterns in
NYSE and S&P 500 index data, one simple explana-
tion is that there are many information traders active
near the open and many liquidity traders active near
the close [41]. We find the similar intra-day pattern in
our S&P 500 index data set. The intra-day pattern

A(t) ≡

∑N
i=1 |G(ti,same)|

N
, (2)
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where N is the total trading days over the 13-year
period and tsame is the same time of each day (N =

3309 in our study). In order to avoid the artificial
correlation caused by this daily oscillation, G(t) signal
is normalized by the intra-day pattern

g(t) ≡ G(t)/A(t), (3)

i.e., each data point divided by the intra-day pattern of
its corresponding time during the day.

2.2. Methods to calculate correlations

We have three methods to quantify the correlations.
The direct method to study the correlation property is
the correlation function estimation, which is defined as

C(τ) ≡
〈G(t)G(t + τ )〉 − 〈G(t)〉2

〈G2(t)〉 − 〈G(t)〉2 , (4)

where τ is the time-lag. The problem with the correla-
tion function estimation is that it depends on the esti-
mated average value of the time series. Since it is diffi-
cult to calculate the true average value, the correlation
function can only give us a qualitative estimation [42].

Another method to calculate the correlation func-
tions is the traditional power spectrum analysis. Since
this method can only apply to linear and stationary (or
strictly periodic) time series, although it could give
quantitative measures, we still need other method to
confirm its results.

We applied the third method – termed detrended
fluctuation analysis (DFA) [43,7] – to quantify the cor-
relation exponent. The advantages of DFA over con-
ventional methods (e.g., spectral analysis and Hurst
analysis) are that it permits the detection of long-
range correlations embedded in a nonstationary time
series, and also avoids the spurious detection of ap-
parent long-range correlations that are an artifact of
nonstationarities. This method has been validated on
control time series that consist of long-range correla-
tions with the superposition of a nonstationary exter-
nal trend [43]. The DFA method has also been suc-
cessfully applied to detect long-range correlations in
highly complex heart beat time series [7,44], and other
physiological signals [45,46].

A detailed description of the DFA algorithm appears
elsewhere [43,7]. Briefly, the |g(t)| time series (with
N data) is first integrated,

y(t) ≡

t
∑

i=1

|g(i)|. (5)

Next the integrated time series is divided into boxes of
equal length, n. In each box of length n, a least squares
line is fit to the data (representing the trend in that
box). The y coordinate of the straight line segments
is denoted by yn(t). Next we detrend the integrated
time series, y(t), by subtracting the local trend, yn(t),
in each box. The root-mean-square fluctuation of this
integrated and detrended time series is calculated by

F(n) =

√

√

√

√

1

N

N
∑

t=1

[

y(t) − yn(t)
]2

. (6)

This computation is repeated over all time scales
(box sizes) to provide a relationship between F(n),
the average fluctuation as a function of box size. In our
case, the box size n ranged from 10 min to 105 min,
the upper bound of n is determined by the actual data
length. Typically, F(n) will increase with box size n.
A linear relationship on a double log graph indicates
the presence of power law (fractal) scaling. Under
such conditions, the fluctuations can be characterized
by a scaling exponent α, the slope of the line relating
logF(n) to logn.

For exactly self-similar process, as, e.g., fractional
Brownian motion, the DFA exponent α is related to
the power spectrum exponent β through the relation
α = (1 + β)/2 [42]. The calculation of F(n) can
distinguish four types of behavior.
(1) Uncorrelated time series give rise to uncorrelated

random walks described by F(n) ∼ nα with α =

1/2, as expected from the central limit theorem.
Power spectrum would be flat with β = 0.

(2) Markov processes with a characteristic correlation
length t0, gives C(τ) ∼ exp(−τ/t0). For t < t0,
it is the Brownian process with α = 1.5 and
corresponding β = 2, nonetheless the asymptotic
behavior for sufficiently large t with α = 1/2
would be unchanged from the purely random case.

(3) In the presence of long-range correlations with
no characteristic time scale, the scaling property
would be a power law function with α 6= 1/2 and
β 6= 0.
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2.3. Correlation results of S&P 500 index

Using correlation function estimation, we find that
the correlation function of g(t) decays exponentially
with a characteristic time of the order of 1–10 min,
but the absolute value |g(t)| does not. This result is
consistent with previous studies on several economic
series [35,37,47].

The power spectrum calculation of |g(t)| shows that
the data fit not one but rather two separate power laws:
for f > f× the power law exponent is β1 = 0.31,
while for f < f× the exponent β2 = 0.90 is three
times larger; here f× is called the crossover frequency.

DFA method confirms our power spectrum results.
From the behavior of the power spectrum, we expect
that the DFA method will also predict two distinct
regions of power law behavior, with exponents α1 =

0.66 and α2 = 0.95 for t less than or greater than a
characteristic time scale t× ≡ 1/f×, where we have
used the relation

α = (1 + β)/2. (7)

The data yield α1 = 0.66, α2 = 0.93, thereby confirm-
ing the consistency of the power spectrum and DFA
methods. Also the crossover time is very close to the
result obtained from the power spectrum, with

t× ≈ 1/f× ≈ 600 min (8)

about 1.5 trading days.
To test whether this correlation is due to the distri-

bution function, we shuffled each point of the |g(t)|

time series randomly. The shuffling operation keeps
the distribution of |g(t)| unchanged, but kills the cor-
relations in the time series totally if there are any. DFA
measurement of this randomly shuffled data does not
show any correlations and gives exponent α = 0.50.
This tells us that the long-range correlations are actu-
ally due to the dynamics of the economic system and
not simple due to the distribution.

The observed long range correlation and the cross-
over behavior noted above is from the entire 13-year
period, so it is natural to enquire whether it will still
hold for periods smaller than 13 years. Therefore,
we choose a sliding window (with size 1 year) and
calculate both exponents α1 and α2 within this window
as the window is dragged, down the data set with
one month step. We find that the value ofα1 is very
“stable” (independent of the position of the window)

fluctuating around the mean value 2 /3. Surprisingly,
however, the variation of α2 is much greater, showing
sudden jumps when very volatile periods enter or leave
the time window.

We studied several standard mathematical models,
such as fractional Brownian motion [42,48] and frac-
tional ARIMA processes [49], commonly used to ac-
count for long-range correlation in a time series and
found that none of them can reproduce the large fluc-
tuation of α2.

3. The volatility distribution of S&P 500

The volatility is a measure of the mean fluctuation
of a market price over a certain time interval T . The
volatility is of practical importance since it quantifies
the risk related to assets [25]. As shown above, unlike
price changes that are correlated only on very short
time scales [35] (a few minutes), the absolute values
of price changes (which are closely related to the
volatility) show correlations on time scales up to many
years [37,47,50,51].

The same data set of the S&P 500 index of the
New York stock exchange is explored here to study the
volatility distribution. This data set has been extended
by 7 years the data set previously analyzed in [26].

We calculate the logarithmic increments G(t) in
Eq. (1), where G(t) is the relative price change 1Z/Z

in the limit 1t → 0. Here we set 1t = 30 min, well
above the correlation time of the price increments;
and we obtain similar results for other choices of 1t

(larger than the correlation time).
As we show in the correlation discussion, there

is a strong “U-shape” market activity over the day.
To remove artificial correlations resulting from this
intra-day pattern of the volatility [52,53,55,54], we
normalized |G(t)| by A(t) as shown in Eq. (3).

We obtain the volatility at a given time by averaging
|g(t)| over a time window T = n · 1t with some
integer n,

vT (t) ≡
1

n

t+n−1
∑

t ′=t

∣

∣g(t ′)
∣

∣. (9)

The volatility fluctuates strongly showing a marked
maximum for the 1987 crash. Generally periods of
high volatility are not independent but tend to “clus-
ter”. This clustering is especially marked around the
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1987 crash, which is accompanied by precursors (pos-
sibly related to oscillatory patterns [25]). Clustering
occurs also at other times (e.g., during the second half
of 1990), while there are extended periods where the
volatility remains at a rather low level (e.g., in 1985
and 1993).

When we consider a scaled probability distribution
P(vT ) for several values of T , the data for different av-
eraging windows collapse to one curve. Remarkably,
the scaling form is log-normal, not Gaussian. In the
limit of very long averaging times, one expects that
P(vT ) becomes Gaussian, since the central limit theo-
rem holds also for correlated series [42], with a slower
convergence than for non-correlated processes [29,
56]. However, a log-normal fits the data better than a
Gaussian.

Correlations can be accurately quantified using de-
trended fluctuation analysis [43]. The analysis reveals
power-law behavior independent of the T value cho-
sen with an exponent α ∼= 0.9 in agreement with the
value found for the absolute price increments (see Sec-
tion 2).

4. Discussion of empirical results on finance

In this study, we have used the DFA method to
display correlation in the volatility of S&P 500 index.
We find that the volatility is highly correlated, and
that the correlation is remarkably long range, indeed,
over 5 decades. Moreover, the quantitative scaling of
the correlation follows the power law form observed
in numerous phenomena which have a self-similar or
“fractal” origin.

We have also found that the probability distribu-
tion of the S&P 500 volatility can be well described
by a log-normal function. This functional shape does
not depend on the averaging time interval T used
to calculate volatility vT (t). The log-normal shape
of the distribution is consistent with a multiplicative
process [57] for the volatility [27]. However, a mul-
tiplicative behavior would be surprising, because ef-
ficient market theories [35] assume that the price re-
flects all current information that could anticipate fu-
ture events and the price changes, G(t), are caused
by incoming new informations about an asset. Since
such information-induced price changes are additive

in G(t), they should not give rise to multiplicative be-
havior of the volatility.

To account for the time dependence of the volatility
and its long-range correlations, ARCH [58], GARCH
[59] models and related approaches [49] have been
developed, which assume that the volatility depends
on time and on the past evolution of the index. It may
be also worthwhile to test these models with regard to
the volatility distribution P(vT ).

5. Scale invariance in economics

Economics is different than finance, and we have
also looked at economic data. Specifically, in col-
laboration with a card-carrying economist, Michael
Salinger – we studied the possibility that all the com-
panies in a given economy might interact, more or
less, like an Edwards–Anderson spin glass. As in an
Edwards–Anderson spin glass, each spin interacts with
another spin – but not with the same coupling and not
even with the same sign.

If the sales in a given company x decreases by, e.g.,
10%, it will have repercussions in the economy. Some
of the repercussions will be favorable – company y ,
which competes with x , may experience an increase
in market share. Others will be negative – service
industries that provide personal services for company
x employees may experience a drop-off in sales
as employee salaries will surely decline. There are
positive and negative correlations for almost any
economic change. Can we view the economy as a
complicated Ising system or spin glass?

To approach this interesting bit of statistical “po-
etry” and make sense of it, we first located and se-
cured a database that lists the actual size of every firm
in the United States. With this information, we did an
analysis to determine how the distribution of firm size
changes from one year to the next. We then made a his-
togram for each of three characteristic firm sizes. The
largest firms have a very narrow distribution – plausi-
ble because the percentage of size change from year to
year for the largest firms cannot be that great. On the
other hand, a tiny company or a garage-based start-
up can radically increase (or decrease) in size from
year to year. The histograms have a width determined
by the size of the firm. When this width is plotted on
the y axis of log-log paper as a function of the size of
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the firm on thex axis, the data are approximately lin-
ear over 8 orders of magnitude, from the tiniest firms
in the database to the largest. The width scales as the
firm size to an exponentβ , with β ≈ 1/6 [60]. We can
therefore normalize the growth rate and show that all
the data collapse on a single curve – demonstrating the
scaling of this measure of firm size.

Why does this occur? We are working on that.
If we model this firm structure as an approximate
Cayley tree, in which each subunit of a firm reacts
to its directives from above with a certain proba-
bility distribution. This model, developed primarily
by Sergey Buldryev, seems to be consistent with the
critical exponent −1/6 [61]. More recently, Amaral
et al. [62] have proposed a microscopic model, and
Takayasu [32] has extended the empirical results to a
wide range of countries, and developed still another
model.

It is not impossible to imagine that there are some
very general principles of complex organizations at
work here, because similar empirical laws appear to
hold for data on a range of systems that at first sight
might not seem to be so closely related. For example,
instead of studying the growth rate of firms one can
study the growth rates of countries by analyzing the
ratio of the GDP of a country in one year compared
to its value in the previous year. It appears that the
country GDP behaves the same way as the size of a
firm [63,64]. Very recently, a data base comprising
research budgets of universities were analyzed in the
same way, with similar results [65].

Instead of the population of a firm at time t

(measured in number of employees) one might analyze
the population Ns(t) of a species s in successive
years. Such data exist for a 30-year period for every
species sighted in North America, and very recently
Keitt and Stanley [18,19] have analyzed this database
using the same sort of techniques used to describe
long-term data sets on economics and finance. They
find statistical properties that are remarkably similar,
and consistent with the idea that “every bird species
interacts with every other bird species”, just as the
economic analysis supports the notion that “every
firm interacts with every other firm”. This empirical
result is not without interest, since it serves to cast
doubt on models of bird population (and of economic
systems) in which one partitions the entire data set into
strongly-interacting and weakly-interacting subsets,

and then ignores or oversimplifies the interactions in
the weakly-interacting subset.

6. Conclusions

Is the point of this talk just to show that a lot of dif-
ferent systems appear to develop scale-invariant cor-
relations? If so, how do we understand this empirical
fact?

Bak’s idea that systems self-organize themselves
such that they are in effect near a critical point is
an appealing unifying principle. Near a critical point,
there is a delicate balance between the exponentially-
growing number of different one-dimensional paths
connecting any two faraway subunits and the exponen-
tially-decaying correlations along each one-dimen-
sional path (this concept is illustrated, e.g., in Fig. 9.4
of Ref. [1]. If the control parameter (say coupling
constant) is too small, the correlations die out so
fast along each one-dimensional path that subunits far
from one another are not well correlated. However,
at a critical point, the exponentially-large number of
paths connecting each pair of subunits is sufficient
to balance out the exponential decay along each
path and the “correction factor” wins out – this
correction factor is the power law that governs the
total number of one-dimensional paths connecting two
distant subunits. The exponent in this correction factor
depends primarily on the system dimension, and not at
all on the actual arrangement of the subunits (lattice or
no-lattice).

Could it be that somehow social systems push
themselves up “up to the limit” – just as a sandpile
is pushed to the limit before an avalanche starts, an
image that has attracted recent attention in the debate
between “self-organized criticality” and “plain old
criticality” (see, e.g., Vespignani and Zapperi [66] and
references therein)? For example, in economics every
subunit plays according to rules and pushes itself up
against the limits imposed by these rules. But social
systems display a variety of rich forms of “order”, far
richer than we anticipate from studies of ferromagnets
and antiferromagnets (see, e.g., some of the papers
appearing in Knobler et al. [67]). Could such orderings
arise from the complex nature of the interactions? Or
from the range of different “sizes” of the constituent
subunits as, e.g., one finds ordering in sandpiles when
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sand particles of two different grain sizes are dropped
onto a heap – see, e.g., Refs. [66–69]. These are
questions that occupy us now, and questions I would
be delighted to discuss with any of the conference
participants.
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