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02215, USA 
SFakultat fur Physik, Universitat Konstanz, 7750 Konstanz, West Germany 

Received 12 August 1985 

Abstract. We study the effect of excluded volume interactions on diffusion in random 
diffusion-limited aggregates. Performing Monte Carlo simulations we calculate the mean 
square displacement (r2(r)) of a tracer particle as a function of the concentration c of the 
diffusing particles. We find that the long time behaviour of ( r 2 ( r ) )  can be described by 
(r2(r) ) -  [ ( I  - ~ ) f ~ ( c ) r ] ~ / ~ -  where d ,  is independent of c and fT(c) describes correlations 
between consecutive jumps of the tracer particle. Close to c = 1 we find that ( r 2 ( r ) )  scales 
as ( r2( r ) )=g(r / r~)where  rx = c2/(l - ~ ) ~ a n d g ( x ) - x ' / ~ f o r x < <  1 a n d g ( x ) - ~ ~ / ~ W f o r x > >  1. 

How are the laws of diffusion and transport on fractal lattices changed when particles 
interact with each other? This question has been of immense recent interest (see, e.g., 
Stanley and Ostrowsky 1985), especially since Laibowitz and Gefen (1984) found 
experimentally that the transport properties of real materials with a fractal structure 
cannot be explained simply in terms of random walk models where the walkers do 
not interact with each other. 

In real systems, the interaction between diffusing particles may become very compli- 
cated. The interaction always consists of a short-range part due to the excluded volume 
of a particle and may also involve a long-range part, which in the case of charged 
particles is governed by the Coulomb interaction. Their influence on polarisation has 
been studied by Gefen and Halley (1984). The influence of the Coulomb interaction 
on the difusion properties is difficult to investigate, even for Euclidean lattices (Bunde 
and Dieterich 1984). Therefore, we will concentrate on short-range interactions and 
will restrict ourselves to the simplest case, the hard-core interactions, where double 
occupancy of a given site is forbidden. While the influence of the hard-core interaction 
on the diffusion process has been investigated in detail in Euclidean lattices (see Kehr 
and Binder 1984, Bunde er a1 1985, and references therein) the problem to our 
knowledge has not yet been studied for fractal geometries. 

In this letter we present the first study on a fractal lattice. We have chosen 
diffusion-limited aggregates (DLA) (see, e.g., Witten and Sander 1983) for which the 
non-interacting limit has been extensively studied (Meakin and Stanley 1983). Using 
the Monte Carlo technique we have investigated how the mean square displacement 
( r2( t ) )  of a tracer particle is changed by the hard-core interaction between the particles. 
We find the remarkable result that the dimensionality of the walk is not changed by 
the interaction and thus does not depend on the concentration c of the diffusing 
particles. In contrast, the amplitude of ( r 2 ( t ) >  depends crucially on the interaction, 
since the hard-core interaction creates strong correlations between consecutive jumps 
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of the tracer particle, Close to c =  1 we find the intriguing result that ( r 2 ( t ) ) =  g ( t / t x )  
with a crossover time t ,  which depends on the concentration in the same way it does 
in one-dimensional systems, i.e. t, = [( 1 - c ) / c ] - ’  (Richards 1977). 

For our numerical study we have generated large DLA clusters in the way described 
by Witten and Sander (1983). For high concentrations of diffusing particles, we expect 
that the boundary of the cluster might play a role. To allow for larger concentrations, 
we used the following method: we grow a cluster of a given number of sites (usually 
5000) and we keep only that portion of it that fits into a box of given length (usually 
L = 100) containing about 2000 cluster sites. Then we use mirror boundary conditions 
to replicate the box. Due to the fractal structure of the DLA, the conventional periodic 
boundary conditions are not useful since the end points at opposite boundary sites 
only very rarely will fit to each other. We have also studied diffusion on a single large 
cluster of 20 000 sites (kindly supplied by P Meakin). Our results were not affected, 
so we conclude that the mirror boundary conditions do not matter. 

In order to simulate the diffusion, first a random configuration of particles with 
probability p ,  i.e. concentration c, has to be generated on the DLA. Next, a particle is 
selected at random and an attempt is made to move to a randomly selected adjacent 
site. If the adjacent site belongs to the cluster and is empty the particle moves, otherwise 
it stays. After each trial the time is increased by 1/ N, where N is the total number of 
particles, so that after one unit of time has passed, every particle (on average) had the 
possibility of moving once. We have measured the mean square displacement of the 
tracer particle for times up to lo5 time steps, and averaged over up to 200 samples. 
For c + 0 the hard-core interaction should not matter and we expect that ( r2( t ) )  becomes 
identical to ( r2( t ) )  for the non-interacting limit, which for large times is given by 

( r 2 ( t ) ) =  ( c r t ) 2 ’ d w  ( 1 )  

where a is proportional to the jump frequency of the particle and d, is the dimension 
of the walk. For DLA d,=2.57*0.1 (Meakin and Stanley 1983, Havlin 1984). 

First we investigated if d, is affected by the hard-core interaction. Figure 1 shows 
representative results of ( r 2 ( t ) )  for four concentrations of diffusing particles, c = 0.2, 
0.5,0.8 and 0.9. We see clearly that for large times the slopes ( = 2/ d,) are independent 
of c and approach the value 2/dw=0.78*O.03. We therefore obtain the same value 
for the dimension of the walk, dW=2.57*O.l, found by Meakin and Stanley in the 
non-interacting limit. For comparison, in two- and three-dimensional Euclidean lat- 
tices, d, = 2 and is not changed by switching on a hard-core interaction between the 
random walkers, while in one dimension the hard-core interaction changes d, from 2 
into 4 for all concentrations (Richards 1977). 

In contrast to the exponent d, the jump frequency a is strongly concentration 
dependent and decreases drastically as c tends to 1 (see figure 1) .  How can we 
understand this? 

Obviously, by considering many hard-core particles, the average jump rate of the 
tracer particle is changed from a to (1 - c) a since now the number of available sites 
for diffusion is diminished by the factor c, = 1 - c, which represents the concentration 
c, of vacancies. On average, a particle has to wait l / [ ( l  - c ) a ]  time steps before it 
can make a jump. Therefore, in the spirit of a mean-field approach we might consider 
consecutive jumps of a tracer particle as being independent of each other. Then the 
mean square displacement would be 

( r 2 ( t ) ) M F A  = ( a c , t ) 2 ’ d w  (2) 
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Figure 1. Mean square displacement ( r 2 ( f ) )  against time t of a tracer particle for the 
concentrations c = 0.2 (W),  0.5 (+), 0.8 ( A )  and 0.9 (0) of hard-core particles on the DLA. 

The broken lines describe the asymptotic behaviour of ( r 2 ( t ) ) .  

for large t. However, consecutive jumps are not independent of each other, as can be 
most easily seen for c, -+ 0. In this limit, vacant sites are rare and the probability of a 
particle jumping back to a site it just left is much higher than that of its jumping to 
any other neighbouring site. Clearly this correlation diminishes ( r2( t ) )  further. Devi- 
ations of ( r 2 (  t ) )  from ( r 2 (  f ) )MFA are an indication of the presence of these dynamical 
correlations. In order to incorporate them, we introduce a tracer correlation factor 
f T ( c )  via 

(3) 

which generalises the conventional definition for two- and three-dimensional Euclidean 
lattices (see, e.g., Kehr and Binder 1984) to fractals. 

The result for fT(c) in the DLA fractal is shown in figure 2. For comparison we 
have also shown the exact results forfT( 1 )  in the square lattice and in the simple cubic 
lattice (Nakazato and Kitahara 1980, Tahir-Kheli and Elliott 1983). By definition, 
fT(0) = 1.  Above c = 0.1, fT shows a sharp decrease. For c,<O.l, fT(c) approaches 
zero as 

( r 2 (  t ) )  = [CY( 1 - c)fT( c )  t ] 2 / d w  

f T ( c )  - cv* (4) 

This result shows that in the DLA cluster close to cv = 0 consecutive jumps of the tracer 
particle are strongly correlated. These dynamical correlations lead to a breakdown of 
the mean-field approach close to the ‘critical point’ c, = 0, reminiscent of the breakdown 
of the mean-field approach in critical phenomena close to the critical point. In two- 
and three-dimensional Euclidean lattices the dynamic correlations are considerably 
weaker and fT( c)  stays non-zero even in the vicinity of c, = 0. The reason is connected 
with the linear structure of the arms of the DLA. 

Next we consider how the short time behaviour of ( r2( t ) )  depends on the concentra- 
tion of the hard-core particles. Figure 3 shows ( r2( t ) )  for the same four concentrations 
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Figure 2. Tracer correlation factor fT(c) against concentration c of hard-core particles on 
the DLA. The sumbols (U) and (W) denote the values of fT(l) for the square lattice and 
the simple cubic lattice, respectively. 

t 

Figure 3. The same as figure 1, but for times t s 1000. 

c = 0.2, 0.5, 0.8 and 0.9 as in figure 1 for time steps t between 10 and 1000. In the 
log-log plot, the four curves represent nearly straight lines but, unlike figure 1, the 
slope changes continuously. We could say that, at small time, the walk is described 
by an effective d,, which increases gradually when c is increased. In figure 4 we have 
plotted this effective small time d;!  as a function of c. dkff has the value of independent 
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Figure 4. Effective short time dimensionality of the walk, d,, as a function of concentration. 

particles for c<O.1 and then increases gradually. For c,+O dkff approaches 4, the 
result for interacting particles on a one-dimensional chain. 

This can be understood as follows. In the limit of c, + 0 only a few vacancies are 
available and therefore the diffusion is very slow. It takes a particle a long time to 
leave a branch of the DLA and to discover the fractal structure of the cluster. Therefore, 
at short times the motion of the tracer should be governed by the one-dimensional 
character of the DLA branches. Hence, in the limit of c,+ 0 we expect d;!  = 4 at short 
times, which explains our result. 

As we know from figure 1, d ,  tends asymptotically to its value for the non-interacting 
limit. The crossover time t ,  increases strongly when c increases (see figure 1). For 
t<< t ,  the motion of the tracer is governed by the one-dimensional branches of the 
DLA. For one-dimensional systems we know (Richards 1977) that, in the limit of c +  1, 

(r2(r))-{[(1 -C) /C]2?) ’ /2  

2 1/2  
= [ ( c , / c )  t l  . 

Equivalently 

where 

t o =  (c /cv)2  

determines the timescale of the one-dimensional diffusion. We assume now that in 
the limit of high concentration the mean square displacement of interacting particles 
in DLA also depends only on the ratio t /  to( c), i.e. t ,  - to: 

( r 2 ( t ) )  = g(t/tx(c)) ( 6 )  

where g(x) is more general than ( 5 b ) .  For small times, the diffusing particles feel only 
single topologically one-dimensional branches, so we expect 

g(x) - x”2 (x<< 1). (7a) 
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For large times, the particles feel the fractal and we expect 

g(x) - X 2 ’ d w  (x >> 1)  

in analogy with the zero concentration limit of (2). 

c = 1 (see figure 5) and the result confirms the scaling. 
We have checked this scaling ansatz for various concentrations in the vicinity of 

loo 

Figure 5. (rZ( t ) )  against t /  t ,  = f (  1 - c)’/c2 for various concentrations of hard-core particles 
close to c =  1 :  c=O.8  (+), 0.85 (O), 0.9 (x ) ,  0.92 ( A )  and 0.95 (B) of concentration of 
hard-core particles on DLA. 

When we compare (7a), (76) and (5c) with (3) we get a more accurate description 
of fT( c )  close to c = 1. We find 

f T ( C )  - C ” l C 2  ( C V - + O ) .  (8) 

In conclusion we have studied how short-range hard-core interactions affect 
diffusion in DLA clusters. We have considered the mean square displacement of a 
tracer particle and have found that the dimension of the walk is not affected by the 
interaction, but the interaction induces strong correlations between consecutive jumps 
of the tracer, which drastically change the amplitude of ( r 2 (  t ) ) .  Close to cv = 0, i.e. 
c = 1 ,  we have found that ( r2( t ) )  shows scaling behaviour with a crossover time that 
is typical for one-dimensional systems. 

In a separate work (Amitrano er al1985), we have also studied diffusion of hard-core 
particles on the incipient percolation cluster in d = 2. We have found that in this case 
also the interaction did not affect the dimension of the walk. After submitting this 
letter we learnt that this observation has also been confirmed by Heupel (1985) for 
percolation in d = 3. 

We are grateful to A Coniglio, F Leyvraz, P Meakin, L Moseley and D Stauffer for 
valuable discussions. AB gratefully acknowledges financial support from the Deutsche 
Forschungsgemeinschaft. The Center for Polymer Studies is supported by ONR and 
NSF. 
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