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We study the dynamics of a system composed of interacting units each with a complex internal
structure comprising many subunits and treat the case in which each subunit grows in a multiplicative
manner. We propose a model for such systems in which the interaction among the units is treated in a
mean field approximation and the interaction among subunits is nonlinear. We test the model and find
agreement between our predictions and empirical results based on a large economics database spanning
20 years. [S0031-9007(98)05355-1]

PACS numbers: 05.40.+j, 05.70.Ln, 64.60.Lx, 87.10.+e

In the physical sciences, power law scaling is usuallywiewed as a structureless unit [6]. However, later studies
associated with critical behavior (thus requiring a particu{7—10] reveal that the dynamics of real firms are not fully
lar set of parameter values), or with scale free growttconsistent with the simplified picture of Ref. [6].
processes [1]. For example, in the Ising model there is a We develop a model that dynamically builds a diver-
particular value of the strength of the interaction betweersified, multidivisional structure, reproducing the fact that
the units composing the system that generates correlatiomstypical firm passes through a series of changes in or-
extending throughout the entire system and leads to poweyanization, growing from a single-product, single-plant
law distributions. In the social and biological sciencesfirm, to a multidivisional, multiproduct firm [11]. The
there also appear examples of power law distributionsnodel reproduces a number of empirical observations for
(such as incomes [2], bird populations [3], and hearta wide range of values of parameters and provides a pos-
dynamics [4]). Although self-organized criticality has sible explanation for the robustness of the empirical re-
been the preferred explanation for these results, it isults. Because of our encouraging results for the case of
difficult to imagine that for all these diverse systems, thefirm growth, our model may offer a generic approach to
parameters controlling the dynamics spontaneously selexplain power law distributions in other complex systems.
tune to their critical values. The model, illustrated in Fig. 1, is defined as follows.

In this Letter, we propose an alternative mechanism, irA firm is created with a single division, which has a size
the spirit of scale free growth processes, that could explaig,(r = 0). The size of a firmS = X;£;(¢) at timezt is
how power law scaling in biological or social sciencesthe sum of the sizes of the divisiods(r) comprising the
can emerge even in the absence of critical dynamicdirm. We define a minimum siz&,;, below which a firm
The guiding principles for our approach, to be justifiedwould not be economically viable, due to the competition
below, are as follows: (i) The units composing thebetween firms;S.;, is a characteristic of the industry
system have a complex evolving structure (e.g., the firmg which the firm operates. We assume that the size of
competing in an economy are composed of divisions, theach divisioni of the firm evolves according to a random
cities in a country competing for the mobile population multiplicative process [6]. We define
are composed of distinct neighborhoods, the population _
of some species living in a given ecosystem might be A&i() = &m0, (1)
composed of groups living in different areas), and (ii) thewhere 7;(r) is a Gaussian-distributed random variable
size of the subunits composing each unit evolve accordinwith zero mean and standard deviatiBnindependent of
to a random multiplicative process. &;. The divisions evolve as follows:

Fortunately, for one of the examples listed above, there (i) If A&;(r) < Smin, divisioni evolves by changing its
is a wealth of quantitative data, and here we focus orsize, and¢;(r + 1) = &;(r) + A&;(z). Ifits size becomes
a large database giving the time evolution of the sizesmaller thanS,;, —i.e., if &(r + 1) < Spin—then with
of firms [5]. In an economy, the units composing theprobability p,, division i is “absorbed” by divisionl.
entire system are the competing firms. In general, thes€hus, the parametep, reflects the fact that when a
firms have a complex internal structure, with each firmdivision becomes very small it will no longer be viable
composed of divisions (the subunits of each unit). Itdue to the competition between firms.
has been proposed that the evolution of a firm's size (i) If A&;(r) > Smin, then with probability(1 — py),
is described by a random multiplicative process withwe set &;(r + 1) = &;(r) + A&;(r). With a probabil-
variance independent of the size, and that each firm can by p,, division i does not change its size—so that
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FIG. 2. Probability density of the logarithm of firm size
=3 1 for the model and for U.S. publicly traded manufacturing
firms in the 1994 £omPUSTAT database. These results were
obtained drawing lo§min from a Gaussian distribution with
average value Iq§ X 10°) and widthD = 5. Similar results
would be obtained for other broad distributions $fin. The
FIG. 1. Schematic representation of the time evolution Ofg'ulr;elgjcral:s(;.rg,uIsiloznso'(v)vsejrzn%egfirrggd(fgvrn?héjsaéag?;?;:er
the size and structure of a firm. We chooSgin =2, and 565" the actual probability of a new division being created

pr = pa = 1.0. The first column of full squares represents S ; o ;
the size¢; of each division, and the second column representger division and per iteration is approximately 0.01).

the corresponding change in siag;. Empty squares represent
negative growth and full squares positive growth. We assume, |t js common to study the logarithm of the one-year

for this example, that the firm has initially one division of size _ _
& = 25, represented by & X 5 square. Atr = 1, division 1 gr_owth rate, ry = InR,, where R - S(y + 1)/S.(y),_
grows by A¢, = 3. A new division, numbered 2, is created With S(y) and S(y + 1), are the sizes of the firm in

becauseA ¢, > Smin = 2, and the size of division 1 remains the yearsy andy + 1. The empirical distribution of
unchanged, so for = 2, the firm has 2 divisions with sizes r; for firms with sizes is, to first order approximation,

&1 =25 and & = 3. Next, divisionsé; and & grow by 2 consistent with an exponentlal form [10]
and —2, respectively. Division 2 is absorbed by division 1,

since otherwise its size would becorfie= 3 — 2 = 1 which \/_Irl — 7l
p(rilS) = )
\/—01(5)

is smaller thanSmin. Thus, at timer = 3, the firm has only o1 (S)
one division with size£, = 25 + 2 + 1 = 28. Note that if !

division 1 would be absorbed, then division 2 would absorb\,\,here 71 represents the average growth rate. Moreover,

division 1 and would then be renumbered 1. If division 1 is
absorbed and there are no more divisions left, the firm “dies.” Itg\(/ev fs(;?r?]dard deviatiomr; (S) is consistent with a power

&i(r + 1) = &(r)—and an altogether new division is 1(S) ~ 577, (3)
created with siz&;(r + 1) = A&;(r). Thus, the parame- and for U.S. manufacturing firms3 =~ 0.2 [10]. We
ter p reflects the tendency to diversify: the largempis,  find that p(r]S) is quite similar in form to the empiri-
the more likely it is that new divisions are created. cal results [10]. Figure 3(a) compares (S) with the
The dynamics are thus controlled by three independergmpirical data of Ref. [10]: for both, Eq. (3) holds with
parametersV, p,, and py—Sni, just sets the scale, so g = 0.17 = 0.03. Equations (2) and (3) allow us to
the results of the model do not depend on its value. Weacale the growth rate distributions for different firm sizes
assume that there is a broad distribution of valueS,gf [Fig. 3(b)].
in the system because firms in different activities will have We next address the question of the structure of a given
different constraints. firm. To this end, we calculate the probability density
In Fig. 2, we compare the predictions of the modelp(£;|S) to find a division of sizeZ; in a firm of sizeS.
for the distribution of firm sizes in the stationary stateFor the model, we find that the distributign scales as
with the empirical data [10]. The stationary state isa power law up taS® and then it decays exponentially.
reached after approximately 10 “years,” provided thatHence, we make the hypothesis thatobeys the scaling
new firms are created regularly. We define one “yearrelation
as ¢ iterations of our rules applied to each firm, and —a @
we find no significant dependence of the results on the PIENS) ~ §7Cf1(&/S7). (4)
value of ¢ for € > 10. We find similar results for a where (1) ~ u” for u < 1 with 7 = 2/3. This hy-
wide range of parameters = 0.1-0.2, p, = 0.01-1,  pothesis is confirmed by the scaling plot of Fig. 4(a). We
andp; = 0.1-1.0. find « = 0.66 = 0.05 from plotting the average value of
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1; the data fall onto a single curve corresponding to the scaling

FIG. 3. (a) Dependence of the standard deviation of th o e
growth ra(te)s onpfirm size. Shown are the pre(\j/ilctilons of th r(%)rm (4). (b) Data collapse of the conditional probability

model and the empirical results. The values of the paramete ensity p,; the data fall onto a single curve corresponding to
are the same as in Fig. 2. The straight line with slope 0.17 is ihe scaling form (5).

least squares fit to the predictions of the model. (b) Probability . . L .

density of one-year growth rates for different firm sizes plottedyear and assuming that the subunits have similar sizes, we
in scaled variables. The distributions are tent shaped, as fazan apply the central limit theorem, from which it follows

the empirical data [10], and consistent with an exponentiathats, ~ N~!/2, leading to the testable scaling law

distribution.

B=(1~-a)2. (6)
& againstS. The same value ofr leads to the best Fora = 0.66 = 0.05, Eq. (6) predictg3 = 0.17 * 0.03,
scaling plot. in remarkable agreement with our independent calculation

Next, we make the hypothesis that the probabilityof S.
density p»(N|S) to find a firm with sizeS composed of We find that the predictions of the model are only
N divisions obeys the scaling relation weakly sensitive to the parameter values, which perhaps
—(-a —a is the reason why firms operating in quite different
pr(NIS) ~ ST D (/ST ) industries are described by very similar empirical laws.
In writing (5), we use the fact that from (4) the charac-Accordingly, we conjecture that the scaling laws found
teristic size of a typical division scales 8§, so that the for U.S. manufacturing firms [10] also hold for other
typical number of divisions in a firm i§/S* ~ S'7%,  countries, such as Japan, with~= 0.2; this conjecture
Figure 4(b) shows that the results of the model are conis currently being tested with empirical data [12].
sistent with the scaling relation (5), with the same value The present model rests on a small humber of as-
of the scaling exponent used in Fig. 4(a). sumptions. The three key assumptions are as follows:
The results described by Egs. (4) and (5) are in qualitafi) Firms tend to organize themselves into multiple divi-
tive agreement with empirical studies [9] that show largersions once they achieve a certain size. This assumption
firms to be more diversified. Moreover, Eq. (5) states thaholds for many modern corporations [11]. (ii) There is
the number of independent subunits in a firm of sfze a broad distribution of minimum scales in the economy.
scales as'~®. SinceN does not change much during a This assumption has also been verified empirically [8].
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(iii) Growth rates of different divisions are independent ofto be in a critical state, but rather can arise from an

one another. For an economist, the latter is the strongenterplay between random multiplicative growth and the

of these assumptions. However, we find that correlationsomplex structure of the units composing the system.

in the growth rates of divisions within the same firm, evenHere we addressed the case in which the interactions

weak correlations, lead t8 — 0. Thus, we confirm that between the units can be treated in a “mean field”

it is the assumption of independence among the growtlway through the imposition of a minimum size for the

rates that generates results similar to the empirical findsubunits. More general interactions may still lead to

ings of Ref. [10]. power law scaling, so our model may offer a framework
There are two features of our results that are perhap®r the study of complex systems.

surprising. First, although firms in our model consist We acknowledge helpful discussions with D. Canning,

of independent divisions, we do not fin@l = 1/2. To J. Sachs, and J. Sutton. L.A.N.A. thanks JNICT for

understand whyB < 1/2, suppose that the distribution financial support.

of 5, =InSy;, is a Diracd function. Although this

assumption is unrealistic, it leads to an understanding of

the underlying mechanisms in the model. In this case, it

is a plausible assumption that the number of divisions will [1]

i””?"’.‘s.e Iinfearly_ with firm size, be'cause the distribution [2] V. Pareto,Manuel d’Economie PolitiquéDroz, Geneva,

of division sizes is narrow and confined betwegn, and 1966), 4th ed.

Smin/V. This hypothesis is confirmed numerically, and we 3] 1 H. Keitt (private communication).
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