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We study the flow of fluid in porous media in dimensions d52 and 3. The medium is modeled by bond
percolation on a lattice of Ld sites, while the flow front is modeled by tracer particles driven by a pressure
difference between two fixed sites ~‘‘wells’’! separated by Euclidean distance r. We investigate the distribution
function of the shortest path connecting the two sites, and propose a scaling ansatz that accounts for the
dependence of this distribution ~i! on the size of the system L and ~ii! on the bond occupancy probability p. We
confirm by extensive simulations that the ansatz holds for d52 and 3. Further, we study two dynamical
quantities: ~i! the minimal traveling time of a tracer particle between the wells when the total flux is constant
and ~ii! the minimal traveling time when the pressure difference is constant. A scaling ansatz for these
dynamical quantities also includes the effect of finite system size L and off-critical bond occupation probability
p. We find that the scaling form for the distribution functions for these dynamical quantities for d52 and 3 is
similar to that for the shortest path, but with different critical exponents. Our results include estimates for all
parameters that characterize the scaling form for the shortest path and the minimal traveling time in two and
three dimensions; these parameters are the fractal dimension, the power law exponent, and the constants and
exponents that characterize the exponential cutoff functions.

PACS number~s!: 47.55.Mh, 05.60.Cd, 64.60.Ak

I. INTRODUCTION

Percolation theory is a paradigmatic model for connectiv-
ity, originally introduced as a mathematical subject in the
late 1950s. Thereafter, percolation theory has been found
useful to characterize many disordered systems @1–13#. The
aim of the present paper is to discuss the potential applica-
tion of percolation theory as a convenient geometrical model
for understanding numerous aspects of flow through porous
rocks @14,15#. Special emphasis will be given to the study of
oil displacement, i.e., how hydrocarbons propagate through
geological formations between a pair of wells in the oil field.
This work could also be applied to the breakthrough time for
contamination of a water supply, or the time for released
radioactive material to get from a leaking nuclear repository
into the biosphere.

Oil fields are extremely complex, containing geological
heterogeneities on a wide range of length scales from centi-
meters to kilometers @16#. These heterogeneities, caused by
the sedimentary processes that deposited the rocks and the
subsequent actions on the rock, such as fracturing by tectonic
forces and mineral deposition from aquifer flow, have a sig-
nificant impact on hydrocarbon recovery.

However, in many cases the rock can be separated into
two types—high permeability ~‘‘good’’! and low or zero per-
meability ~‘‘bad’’!—and for all practical purposes we can
assume that the flow takes place only in the good rock. The

spatial distribution of the rock types is often close to random,
in which case the classical percolation problem is a good
approximation. The place of the occupancy probability p is
taken by the volume fraction of the good rock, called the
net-to-gross ratio in the petroleum literature. Thus it is rea-
sonable to model the oil reservoir as a percolation cluster.

The most common method of oil recovery is by displace-
ment. Either water or a miscible gas ~carbon dioxide or
methane! is injected in a well ~or wells! to displace the oil to
other wells. Ultimately the injected fluid will break through
into a production well where it must be separated from the
oil, which is a very costly process. Once the injected fluid
has broken through, the rate of oil production declines as
more injected fluid is produced. For economic purposes it is
important to know when the injected fluid will break
through.

As a first-order approximation, we will model the flow
between injector and producer wells using Darcy’s law
~analogous to Ohm’s law in electrical current!, which implies
that the invading and displacing fluids are miscible and have
equal viscosity. Preliminary studies of the breakthrough time
for this model @15# limited the analysis to two dimensions
and p5pc , with no finite size effects. This paper extends
that work to three dimensions and treats the effects of the
off-critical bond occupation probability p and finite system
size. The problem of the flow of two immiscible fluids of
differing viscosities is analogous to diffusion-limited aggre-
gation ~DLA! in percolation and was studied in @17#.

This paper also examines the correlation between overall
system conductivity and breakthrough time, information
highly relevant to the accurate prediction of oil well effi-
ciency. We study this breakthrough time at two distinct
boundary conditions: ~i! at fixed total flux and ~ii! at fixed
pressure difference between the wells.
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In Sec. II, we summarize the scaling properties of a
simple geometrical property—the shortest path—and test its
scaling ansatz in the limit of p@pc and strong finite size
effects. In Sec. III we apply the same ansatz to the minimal
traveling time ~the breakthrough time! at two distinct bound-
ary conditions and determine its correlation with overall con-
ductivity.

II. SHORTEST PATH

This section deals with the distribution of the shortest
path between two sites on a percolation cluster. Because of
the qualitative resemblance between the shortest path and the
minimal traveling time of a tracer particle, the first step in
understanding fluid transport between two sites in a percola-
tion system is to characterize the geometrical properties of
the shortest connecting path. For example, if we assume that
the traveling time along a path is proportional to the path
length ~i.e., all velocities are equal!, then we can obtain a
rough estimate for the traveling time from purely geometri-
cal arguments.

A. Basic distribution functions

The shortest path or chemical distance l between two
sites on a percolation cluster is defined as the shortest path
connecting the two sites @18,19#. The typical value l * of the
shortest path between two sites on a cluster scales with the
geometrical distance r between these points as

l *;rdmin, ~1!

where

dmin5H 1.1360.02 ~d52 !

1.37460.005 ~d53 !
~2!

is the fractal dimension of the shortest path @20,21#.
Consider a hypercubic lattice of Ld sites. All information

about the distribution of shortest paths is contained in the
joint probability density function P(r ,l ), i.e., the probability
that two sites on the same spanning cluster are separated by
geometrical distance r and chemical path l . We sum over all
chemical paths l to calculate the probability distribution that
the Euclidean distance between two sites is r,

P~r ![E P~r ,l !dl . ~3!

Similarly, we obtain the probability distribution that two
sites are separated by the chemical distance l by summing
over all possible geometrical distances,

P~ l ![E P~r ,l !dr . ~4!

Given that the shortest distance between these sites is l , the
conditional probability that the geometrical distance between
two sites is r is @3#

P~rul !5

P~r ,l !

P~ l !
. ~5!

For isotropic media this function has been studied exten-
sively and P(rul ) is of the form @2,3,22–24#

P~rul !;
1

l
S r

l
ñD

gr

expF2aS r

l
ñD

d̃G , ~6!

where

d̃5

1

12 ñ
5

dmin

dmin21
~7!

and

ñ[1/dmin . ~8!

For d52, Ziff recently argued @25# that

gr21525/24 ~d52 !. ~9!

The function of interest to us is the conditional probability
for two sites to be separated by the shortest path l , given
that the geometrical distance between these sites is r:

P~ l ur !5

P~r ,l !

P~r !
. ~10!

From Eqs. ~10! and ~5!, we see that P(rul ) and P(l ur) are
related as

P~ l ur !5P~rul !
P~ l !

P~r !
. ~11!

At the percolation threshold, it has been shown @14# that,
in analogy with Eq. ~6!,

P~ l ur !;
1

rdmin
S l

rdmin
D 2g l

expF2aS l

rdmin
D 2f l G , ~12!

where

g l 215

~gr21 !1~22d f !

dmin
, ~13!

f l 5 d̃ ñ5 ñ/~12 ñ !5

1

dmin21
, ~14!

and

d f5H 91/48 ~d52 !

2.52460.008 ~d53 !
~15!

is the fractal dimension of the incipient infinite cluster @1,3#.
Substituting Eq. ~9! into Eq. ~13!, we find for d52

g l 52.0160.02 ~d52 !. ~16!

The probability distribution of more practical interest is
P8(l ur), defined in the same way as P(l ur) but for any two
randomly chosen points separated by geometrical distance r
and on the same cluster, but not necessarily on the incipient
infinite cluster @14#. P8(l ur) has the same scaling form as in
Eq. ~12!, but with g l replaced by @14#
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g l8 5g l 1

d2d f

dmin
. ~17!

B. Scaling ansatz for shortest path

The complete scaling form of P8(l ur), which accounts
also for finite size effects and off-critical behavior, has been
studied for d52 and reported in @14#. Specifically, the fol-
lowing ansatz has been proposed @14#:

P8~ l ur !;
1

rdmin
S l

rdmin
D 2g

l
8

f 1S l

rdmin
D f 2S l

Ldmin
D f 3S l

jdmin
D ,

~18!

where j;up2pcu
2n is the pair connectedness length, and

the scaling functions have the forms

f 1~x ![exp~2ax2f!, ~19!

f 2~x ![exp~2bxc!, ~20!

and

f 3~x ![exp~2cx !. ~21!

The function f 1 accounts for the lower cutoff due to the
constraint l .r , while f 2 and f 3 account for the upper cut-
offs due to the finite size effect and the finite correlation
length, respectively. Either f 2 or f 3 becomes irrelevant, de-
pending on the magnitudes of L and j: for L,j , f 2 domi-
nates the upper cutoff, otherwise f 3 dominates. We assume
that the finite size effect and the effect of the concentration
of the occupied sites are independent of each other, so that
Eq. ~18! can be represented as a product of the terms that are
responsible for the finite size effect ( f 2) and the effect of the
concentration ( f 3). Simulations for d52 have been per-
formed in @14# and support this assumption.

C. Behavior at criticality

Here we extend the study of P8(l ur) to d53. We nu-
merically test the scaling conjecture ~18! exactly at the per-
colation threshold p5pc—in which case j5` so f 35 f (0)
51. We build clusters using the Leath algorithm @18,19,26#.
Since the Leath algorithm corresponds to the process of se-
lecting a random point on the lattice, the probability P8(l ur)
is equal to the probability that a pair of randomly selected
points has chemical distance l and geometrical distance r,
given that they belong to the same cluster, a cluster that is
not necessarily the infinite cluster. Hence Eq. ~18! reduces to

P8~ l ur !;
1

rdmin
S l

rdmin
D 2g

l
8

f 1S l

rdmin
D f 2S l

Ldmin
D ~p5pc!.

~22!

Figure 1~a! shows that, in the range rdmin,l ,Ldmin,
P8(l ur) has power law behavior with slope

g l8 52.360.1 ~d53 ! ~23!

and rapidly vanishes for l ,rdmin and for l .Ldmin. To de-
termine the functions f 1 and f 2, we compute the rescaled
probability distribution

FS l

rdmin
D [P8~ l ur ! l

g
l
8 r2dmin(g

l
8 21), ~24!

and plot it against the scaling variable x[l /rdmin @see Fig.
1~b!# using the value dmin51.374. According to Eq. ~22!

FIG. 1. For d53, ~a! log-log plot of P8(l ur) at criticality (p
5pc'0.2488) and for different sets of parameters: (r ,L)
5(2,32),(4,64),(8,128). The straight line regime has slope g l8

52.3. ~b! Log-log plot of rescaled probability F(x)

[P8(l ur) xg
l
8 rdmin against rescaled length x[l /rdmin using the

values g l8 52.3 and dmin51.39. The curves are flat in the center
because f 2(x) is a stretched exponential @see Eq. ~25!#. ~c! Log-log
plot of transformed probability P(x)5log10@A/F(x)# versus x
5l /rdmin. The slopes of the solid lines give the power of the
stretched exponential function f 1 and f 2 in Eq. ~25!. Using the
parameter A50.08, the slopes give f'2.1 for the lower cutoff and
c'2.5 for the upper cutoff.
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F~x !5A f 1~x ! f 2FxS r

L D dminG . ~25!

Therefore, F(x) should depend only on x and the ratio r/L .
Indeed, Fig. 1~b! shows excellent data collapse for L/r58,
with sharp cutoffs governed for x,1 by f 1(x) and for x
.(L/r)dmin by f 2@x(r/L)dmin#.

In order to test the assumption that the functions f 1 and f 2
are stretched exponentials with exponents f l and c l , we
plot

P~x ![log10@A/F~x !# ~26!

versus x in double logarithmic scale for various values of
normalization constant A @see Fig. 1~c!#. If the stretched ex-
ponential conjecture is correct, P(x) should have two
straight line asymptotes for log10 x→1` with the slope c l

and for log10 x→2` with the slope 2f l . We find that the
slopes f l and c l of the straight line fits depend weakly on
the value of A. Using A50.08, we obtain the longest regimes
of straight line behavior. For this value of A, we find f l

'2.1 and c l '2.5. Equation ~14! yields a predicted value of
f l 52.67 in agreement with our simulation result.

D. Off-critical behavior

For pÞpc , we identify three regimes determined by the
value of the connectedness length j in relation to the values
of r and L.

~i! j.L.r . In this regime, the fact that pÞpc cannot be
detected because the connectedness length is larger than the
other relevant variables.

~ii! L.j.r . In this case, the upper cutoff of the distribu-
tion Eq. ~18! is governed by f 3 and the functional form of the
rescaled probability F is given by

F~ l /rdmin!; f 1S l

rdmin
D f 3S l

jdmin
D . ~27!

For large l , we suggest an exponential decay @27# of F ,

F~ l /rdmin!;expS 2c
l

jdmin
D . ~28!

Indeed, for p,pc , semilogarithmic plots of logF(l /rdmin)
versus l shown in Fig. 2~a! can be approximated by straight
lines with slopes that approach zero as p→pc . According to
Eq. ~28!, these slopes k(p) should be proportional to
j2dmin;up2pcu

dminn'up2pcu
1.19. Figure 2~b! shows a double

logarithmic plot of uk(p)u versus up2pcu for p,pc . This
curve can be well approximated by a straight line with slope
1.22 in good agreement with the scaling conjecture ~22!. For
p.pc a similar analysis should hold. However, limitations
on the size of the system we can simulate make the analysis
problematic. Figure 2~c! shows P8(l ) for various values of
p.pc . Note that it is only for values of p>pc10.03 that the
distributions ‘‘cut off’’ at smaller l than the distribution for
p5pc . Thus it is only for values of p2pc>0.03 that the
large l behavior of Eq. ~18! is determined by the fact that
the system is not at criticality ~i.e., by f 3) as opposed to
being determined by the finite size of the system ~i.e., by f 2).

Below p5pc10.03, j is still greater than L. On the other
hand, if p is not close to pc , the scaling form is not expected
to hold. Thus, the results are inconclusive based on the sizes
of the systems we can generate—we cannot determine the
parameters that govern the large l behavior of Eq. ~18!
above pc .

~iii! L.r.j . When the connectedness length j is smaller
than the distance r between the wells, the system can be
considered homogeneous @1,3,5#. This can be seen in Fig.
3~a! in which we plot P(l ur) for various values of r at p
50.7 for two-dimensional site percolation (pc50.593). As r
increases from below to above the connectedness length, the
form of the distribution changes from the power law distri-
bution of Eq. ~18! to a Gaussian distribution with a pro-

FIG. 2. For d53, ~a! semilogarithmic plot of transformed prob-
ability F(l ) @see Eq. ~25!# versus l shows pure exponential be-
havior of f 3. ~b! The slope of the log-log plot of the coefficient in
exponential function f 3 as a function of up2pcu gives the value
ndmin'1.22 for p,pc . ~c! P8(l ) for p.pc . Note that it is only
for p>0.2788 that the large l behavior is determined by the fact
that the system is not at criticality.
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nounced peak, a characteristic of homogeneous systems. Fur-
thermore, as shown in Fig. 3~b!, the fractal dimension of the
shortest length crosses over from dmin51.13 to dmin51.0,
characteristic of a homogeneous system @29,28#. The conver-
gence to a Gaussian can be expected due to the following
considerations. The minimal path connecting the wells sepa-
rated by distance r passes through r/j independent blobs.

For each of these blobs, the probability distribution for the
shortest path across the blob l b is still given by Eq. ~18!, but
with r and L replaced by j and l replaced by l b . This
distribution is characterized by ^l b&;jdmin and variance
sb

2[^l b
2&2^l b&

2;j2dmin. The total minimal path is the sum
of n5r/j independent variables l b ; hence it converges to a
Gaussian with

^l &;rjdmin21 and s2;rj2dmin21. ~29!

Thus the slope of the graph, k(p), of ^l & vs r in Fig. 3~c!
should decay as

k~p !;up2pcu
2n(dmin21)

5up2pcu
20.17 ~30!

and the slope of s2 versus r should decay as

up2pcu
2n(2dmin21)

5up2pcu
21.7. ~31!

Indeed @see Fig. 3~d!#, we see that the slope of s2 versus r
decays with p more strongly than that of ^l & versus r. The
numerical values of slopes from Figs. 3~c! and 3~d! are in
good agreement with the theoretical predictions Eqs. ~30!
and ~31!. For d53 we expect similar behavior.

III. MINIMAL TRAVELING TIME AND FASTEST PATH

We turn next to dynamics, the study of flow on percola-
tion clusters, which has close ties to such applications as
hydrocarbon recovery and ground-water pollution @3,30–33#.
In this section, we discuss the properties of the flow on d
52 and d53 bond percolation clusters. Specifically, we in-
vestigate the scaling properties of the distributions of mini-
mal traveling time and the length of the path corresponding
to the minimal traveling time ~fastest path! of the tracer par-
ticles. Some of the results in d52 were reported previously
@15#. Here we extend the work to d53, and study the effects
of finite system size and off-criticality for d52 and d53.

A. The model

We study incompressible flow between two sites A and B
separated by Euclidean distance r. To model the flow front,
we use passive tracers—particles that are not absorbed by the
surroundings, and move only by convection, ignoring mo-
lecular diffusion ~which is slow on the time scales of inter-
est!. The convection is governed by the flow field due to the
pressure difference between sites connected by the bonds.
We simulate the flow of a tracer particle starting from the
injection point A traveling through the medium along a path
connected to the recovery point B. The dynamics of flow at a
macroscopic level on the percolation cluster is determined by
the local flow ~local currents! on the individual bonds in the
backbone of the cluster. The velocity of a tracer at each bond
is determined by the pressure difference across that bond
~Darcy’s law @34#!:

v i j5T~P j2P i!, ~32!

where P i and P j are the values of pressure at sites i and j.
The coefficient T, which is a function of permeability k, vis-
cosity h , and the length of a bond Lb @T5k/(hLb)# , is set to
1. We normalize the velocities, assuming that the total flow J

FIG. 3. For d52, ~a! distributions of P(l ur) for
r54,8,16,32,64,128,256,512 and for p50.7. To reduce the lattice
effects, data are obtained for the pairs of wells on the x axis. @Note
that for this case, where r.j , the distributions P8(l ur) and P(l ur)
are essentially the same since all the clusters span the lattice.# The
distributions converge for large r to a Gaussian with mean ^l &
shown in parts ~b!,~c! and variance s2

5^l
2&2^l &2 shown in part

~d! as functions of r for p50.65 (s) and p50.7 (h). ~b! Log-log
plot of ^l & versus r. Note the crossover from power law behavior
with exponent dmin51.13 to linear behavior with exponent 1.0. ~c!

Same as ~b! on linear scale. The slopes of the linear fits k(p) are
1.45 for p50.65 and 1.30 for p50.7. This yields k(p);(p
2pc)20.17 in good agreement with equation Eq. ~30!. ~d! The de-
pendence of s2 versus r. According to Eq. ~29!, the dependence
becomes linear only for r.j;(p2pc)2n, indicated on the graph.
The slopes of linear fits k(p) are 0.33 for p50.65 and 0.12 for p
50.7. This gives k(p);(p2pc)21.6 in good agreement with Eq.
~31!.
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between A and B is fixed, independent of the distance be-
tween A and B, and the realization of the porous media. This
more closely resembles oil recovery processes where con-
stant flow, as opposed to constant pressure, is maintained.

We obtain the pressure difference across each bond by
solving Kirchhoff’s law

(
j

v i j50, ~33!

for each node i in the cluster where the summation is over all
bonds connected to that node. We define the traveling time t̃
of a path C as the sum of the tracer’s traveling times t i j at
each bond (i j) joining sites i and j which are on the path,

t̃ 5 (
(i j)PC

t i j . ~34!

The traveling length l̃ , in turn, is the number of bonds
present in path C. Among the ensemble of all paths $C%, we
select the path C* that has the minimal traveling time tmin ,

tmin~C*!5min
$C%

t̃ ~C! ~35!

and we define the length of the fastest path l min , correspond-
ing to the minimal traveling time, as the number of bonds
present in path C*. The first quantity tmin is the breakthrough
time of the gas/liquid that displaces the oil during recovery
and has fundamental importance to the oil industry. The
quantity t̃ determines postbreakthrough behavior. We also
define the exponents dx , where x denotes l min , tmin , l̃ , or t̃
by

x*;rdx, ~36!

and where x* is the characteristic ~most probable! length or
time of the corresponding distribution.

Using a ‘‘burning’’ algorithm @37#, we then find the mini-
mal time and the fastest path for the particle to travel be-
tween points A and B. At t5tmin , the tracer particles spread
over t5Jtmin bonds. These bonds constitute a subset of the
backbone with fractal dimension d tm , which is larger than
the fractal dimension of the minimal path but smaller than
the fractal dimension of the entire backbone dB . Hence

dmin,d tm,dB . ~37!

B. Minimal traveling time

We first study the minimal traveling time for d52. In Fig.
4, a scatter plot of the minimal traveling time versus shortest
path, we see that the minimal times are strongly correlated
with the shortest paths in the realizations simulated, tmin
;l

z, where z'1.17. Since l scales as rdmin we propose that
tmin scales as rd tm with d tm5zdmin51.33. This suggests that
the same scaling form that applies to the distribution of
shortest paths can also be applied to the distribution of mini-
mal times, but with different exponents and amplitudes.
Thus, we expect an ansatz similar to Eq. ~18! to hold:

P8~ tminur !;
1

rd tm
S tmin

rd tm
D 2g tm8

f 1S tmin

rd tm
D f 2S tmin

Ld tm
D f 3S tmin

jd tm
D ,

~38!

where the scaling functions are f 1(x)5exp(2atmx2f tm),
f 2(x)5exp(2btmxc tm), and f 3(x)5exp(2ctmxp tm). Here j is
a characteristic length of the pair connectedness function and
has a power law dependence on the occupancy probability p
as

j;up2pcu
2n. ~39!

The first function f 1 accounts for the lower cutoff due to the
constraint l .r , while f 2 and f 3 account for the upper cut-
offs due to the finite size effect and the finite connectedness
length, respectively. Either f 2 and f 3 becomes irrelevant, de-
pending on which of the two values L or j is greater. For
L,j , f 2 dominates the upper cutoff, otherwise f 3 domi-
nates. Since we have assumed independence of the finite size
effect and off-criticality effect, Eq. ~38! can be represented
as a product of the terms that are responsible for the finite
size effect ( f 2) and the effect of the concentration ( f 3).

We sample over 106 different realizations with the two
sites A and B fixed. For each realization, we calculate exactly
the minimal traveling time and the path that corresponds to
the minimal traveling time to obtain P(tmin) and P(l min).

1. Behavior at criticality

We first test numerically the scaling conjecture Eq. ~38! at
the percolation threshold p5pc . In this case, j5` and f 3 is
a constant. Hence Eq. ~38! reduces to

P8~ tminur !;
1

rd tm
S tmin

rd tm
D 2g tm8

f 1S tmin

rd tm
D f 2S tmin

Ld tm
D ~p5pc!.

~40!

Figure 5~a! shows that P8(tminur) has a power law regime
with slope

g tm8 52.060.1. ~41!

FIG. 4. For d52, scatter plot of the minimal traveling time tmin

versus shortest path l for a fixed well separation r51. Note the
strong correlation between tmin and l . The slope of the tail of the
scatter plot is 1.17, yielding a values of d tm51.17 and dmin51.32,
consistent with our result in Table I below.
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To determine the functions f 1 and f 2, we compute the
rescaled probability distribution

FS tmin

rd tm
D [P8~ tminur !~ tmin!

g tm8 r2d tm(g tm21), ~42!

and plot it against the scaling variable x5tmin /r dtm @see Fig.
5~b!#. According to Eq. ~40!

F~x !5A f 1~x ! f 2FxS r

L D d tmG . ~43!

Therefore, F(x) should depend only on x and the ratio r/L .
Unlike the fractal dimension of the shortest path, dmin , there
have been no calculations of the fractal dimension of the
minimal traveling time, d tm . We estimate d tm by finding the
value that yields the best data collapse for Eq. ~43!. For
d tm51.33, Fig. 5~b! shows data collapse with sharp cutoffs
governed for small x,1 by f 1(x) and for large x
.(L/r)d tm by f 2@x(r/L)d tm# .

In order to test the assumption that the functions f 1 and f 2
are stretched exponentials with exponents f tm and c tm , we
make a log-log plot of P(x)[log10@A/F(x)# versus x for
various values of the normalization constant A @see Fig.
5~c!#. If the stretched exponential conjecture is correct, P(x)
should have two straight line asymptotes for log10 x→1`
with the slope c tm and for log10 x→2` with the slope
2f tm . The slopes f tm and c tm of the straight line fits de-
pend weakly on the value of A. Using A50.14, we obtain the
longest regimes of straight line behavior. For this A we ob-
tain f tm'3.0 and c tm'3.0. With the same assumptions us to
derive Eq. ~14!, we can derive a similar expression for f tm ,

f tm5

1

d tm21
, ~44!

which yields a predicted value of f tm of 3.0 in agreement
with our simulation result.

2. Off-critical behavior

Finally, in order to test the dependence of P8(tminur) on p
we obtain data for a large system size L (L51000, d52)
and for several values of pÞpc . As we do for the shortest
length, we analyze the behavior of tmin in three regimes de-
termined by the relation of the value of the connectedness
length j to the values of r and L.

~i! j.L.r . In this regime, the fact that pÞpc cannot be
detected because the connectedness length is larger than the
other relevant variables.

~ii! L.j.r . In this case, the upper cutoff of the distribu-
tion Eq. ~38! is governed by f 3 and the functional form of the
rescaled probability F is given by

FS tmin

rd tm
D ; f 1S tmin

rd tm
D f 3S tmin

jd tm
D . ~45!

For large tmin , we suggest an exponential decay @27# of F

FS tmin

rd tm
D ;expS 2c

tmin

jd tm
D . ~46!

Semilogarithmic plots of F(tmin /r dtm) versus tmin for p.pc
and p,pc shown in Fig. 6~a! and 6~b!, respectively, can be
approximated by straight lines with slopes that approach zero
as p→pc . According to Eq. ~46!, this slope k(p) should
follow

k~p !;j2d tm5up2pcu
d tmn'up2pcu

1.77. ~47!

FIG. 5. For d52, ~a! log-log plot of P8(tur) for p5pc50.5 and
for different sets of parameters (r ,L)5(16,250),(32,500),
(64,1000). The straight line regime has slope g t852.0. ~b! Log-log

plot of rescaled probability F(x)[P8(tminur)xgt8r dtm against res-
caled length x5tmin /r dtm using the values g t852.0 and d t51.33.
The curves are flat in the center because f 2(x) is a stretched expo-
nential @see Eq. ~25!#. ~c! Log-log plot of transformed probability
P(x)5log10@A/F(x)# versus x5tmin /r dtm. The slopes of the solid
lines give the power of the stretched exponential function f 1 and f 2

in Eq. ~25!. Using the parameter A50.14, the slopes give f'3.0
for the lower cutoff and c'3.0 for the upper cutoff.
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Figure 6~c! shows double logarithmic plots of uk(p)u versus
up2pcu for p,pc and p.pc , which can be well approxi-
mated by straight lines with slopes 1.81 and 1.77, respec-
tively, in good agreement with the scaling conjecture, Eq.
~47!. As was the case with the analysis of P8(l ur) for
p.pc for d53 @see Sec. II D 2, point ~ii!#, we cannot deter-
mine the parameters that govern the large tmin behavior of
P8(tmin) because of limitations on the size of the system we
can simulate.

~iii! L.r.j . When the connectedness length is smaller
than the distance between the wells, the behavior of the sys-
tem is the same as a homogeneous system @1,3,5#. This can
be seen in Fig. 7~a! in which we plot P(tminur) for various
values of r at p50.6 (d52). As r increases from below to
above the connectedness length, the form of the distribution

changes from the power law distribution of Eq. ~40! to a
distribution with a pronounced peak, a characteristic of ho-
mogeneous systems. In Fig. 7~b!, in order to eliminate the
finite size effect, we select L5r12 so that the distribution
P(tur) does not have a power law regime, even for small r.
In this case, as shown in Fig. 7~c!, the fractal dimension of
the minimal traveling time crosses over from d tm51.33 to
d tm52.0, characteristic of a homogeneous system @28,29#.
The same considerations that we use to derive the behavior
of the mean and variance of the shortest path can be applied
to the mean and variance of the minimal time. At the mo-
ment of breakthrough, i.e., when the first tracer particle
reaches the second well, the part of the system filled with
tracer particles consists of nb5(r/j)d independent blobs,
each having a certain number of bonds (tmin)b with an aver-
age ^(tmin)b&5jdtm and a variance sb

2
5j2d tm. Thus the aver-

age minimal time for the entire system scales as

^tmin&5nbjd tm5rdjd tm2d, ~48!

with a variance

s2
5nbj2d tm5rdj2d tm2d. ~49!

The scaling plot @Fig. 7~d!# of ^tmin& versus up2pcu shows
good agreement with the theoretical prediction of Eq. ~48!,

^tmin&

rd
5~p2pc!(d2d tm)n

5~p2pc!0.89 ~d52 !. ~50!

The graph of s versus r @see Fig. 7~e!# shows linear behav-
ior, in agreement with Eq. ~49!. Equation ~49! also predicts
that the slope of this linear dependence decays as

up2pcu
2[d tm2(d/2)]n

5up2pcu
20.42 ~d52 !. ~51!

However, the measured slope has a very small variation with
up2pcu that is beyond the accuracy of our data points.

As mentioned above, the minimal traveling time is the
sum of the inverse local velocities over the fastest path where
the fastest path is statistically identical to the shortest path.
While the velocity distribution has been studied extensively
~see, e.g., @38,39#!, because the velocities along the path are
correlated, the relation between the minimum traveling time
distribution and the local velocity distribution is an open
challenge for further research.

The analysis for three dimensions is completely analo-
gous to that for two dimensions. Our results are shown in
Figs. 8 and 9 and the scaling parameters found are included
in Table I.

Note that the exponent d tm is the fractal dimension of the
set of bonds reached by the tracer particles at the moment of
breakthrough. A similar problem was studied in @17#, where
it was found that, when the invading fluid has a lower vis-
cosity than the defending fluid, the fractal dimension of the
cluster occupied by the invading fluid at the moment of
breakthrough ~in d52) is approximately 1.3. This case is
analogous to diffusion-limited aggregation in a percolation
cluster.

Our case of passive tracer particles corresponds to the
equal viscosity of invading and defending fluids. The fact
that both exponents in two dimensions are close to each

FIG. 6. For d52, ~a! semilogarithmic plot of transformed prob-
ability F(tmin /r dtm) versus tmin for f 3 for p50.42,0.43,0.44,0.45,
0.46,0.47,0.48 below criticality. ~b! Same for
p50.52,0.53,0.54,0.55,0.56 above criticality. ~c! The slope of the
log-log plot of the coefficient in the exponential function f 3 as a
function of up2pcu gives the value nd tm'1.77 for p.pc and 1.81
for p,pc .
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other suggests that both cases belong to the same universality
class. Our preliminary analysis of DLA in three-dimensional
percolation clusters suggests that its fractal dimension is
1.4160.05, in good agreement with our result d tm51.45.

C. Fastest path

We observe that the path which takes minimal time is not
always the shortest path. However, analysis of the distribu-
tions of l min yields parameters identical to those for the dis-
tribution of the shortest paths between points separated by
distance r studied in detail in Ref. @14#. Thus, statistically,
the path that takes the shortest time is one of the paths of
shortest length.

In many transport problems, the characteristic time t*
scales with the characteristic length l * with a power law,

t*;~ l *!z. ~52!

Since t* scales as rd t and l * scales as rdmin,

z5

d t

dmin
. ~53!

Since tmin and l min are strongly correlated, the distributions
P(l min) and P(tmin) satisfy

P~ l min!dl min5P~ tmin!dtmin . ~54!

Combining Eqs. ~52!–~54! and the equations for the respec-
tive distributions, we obtain a scaling relation between expo-
nents,

~g l min
21 !d l min

5~g tm21 !d tm . ~55!

These scaling relations are well satisfied by the set of scaling
exponents given in Table I.

D. Dependence of minimal traveling time on resistance

The overall hydraulic resistance R of a percolating system
between two sites A and B with pressure difference PA
2PB is defined as

R5

PA2PB

J
, ~56!

FIG. 7. ~a! Log-log plot of
P(tminur) for p50.6 and for
r54,8,16,32,64,128,256 and L
5258. The distributions for large
r converge to Gaussians with
mean ^tmin& and variance s2. ~b!

Log-log plot of P(tminur) for
p50.6, r54,8,16,32,64,128,256
and L5r12. @Note that, for this
case, where r.j , the distributions
P8(tminur) and P(tminur) are essen-
tially the same since all the clus-
ters span the lattice.# ~c! Log-log
plots of ^tmin& versus r for p50.6
and L5r12. ~d! Log-log plot of
the scaled average minimal travel-
ing time ^tmin&/r

2 versus p2pc for
r5128,192,256,384,512 and
L5r12. Note that in all cases
r@j . The slope of the line, 0.84,
is in good agreement with the the-
oretical prediction 0.89. ~e! The
behavior of the width s of the dis-
tributions of the traveling time
versus r for p50.53, 0.54, 0.55,
0.57, and 0.6. The graph shows
approximately linear dependence
of s on r. The variation of the
slope with p2pc is within the er-
ror bars of the data.
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where J is the total flow defined as the sum of all the veloci-
ties outgoing from site A, which is equal to the sum of ve-
locities coming into site B,

J5(
i

v iA5(
i

v iB . ~57!

It is known @1,3# that the typical resistance R* scales with
the distance between sites A and B as

R*;rm, ~58!

where m50.98 @35#.
We find numerically that resistance strongly correlates

with both minimal traveling length @36#

l min;Rdmin /m ~59!

and minimal traveling time

tmin;Rd tm /m. ~60!

Accordingly, the distribution of the resistance should obey
the same scaling ansatz as Eqs. ~18! and ~38!,

FIG. 8. For d53, ~a! log-log plot of P8(tur) for p5pc

50.2488 and for different sets of parameters (r ,L)5(4,32),
(8,64),(16,128). The power law regime has slope g t852.1. ~b! Log-

log plot of rescaled probability F(x)[P8(tminur)xgt8r dtm against res-
caled length x5tmin /r dtm using the values g t852.1 and d t51.45.
The curves are flat in the center because f 2(x) is a stretched expo-
nential @see Eq. ~25!#. ~c! Log-log plot of transformed probability
P(x)5log10@A/F(x)# versus x5tmin /r dtm. The slopes of the solid
lines give the power of the stretched exponential functions f 1 and f 2

in Eq. ~25!. Using the parameter A50.08, the slopes give f'1.6
for the lower cutoff and c'2.0 for the upper cutoff.

FIG. 9. For d53, ~a! semilogarithmic plot of transformed prob-
ability F(tmin) versus tmin below critical point for p50.1988,
0.2088,0.2188,0.2288.0.2358,0.2388 shows pure exponential be-
havior of f 3. ~b! The slope of the log-log plot of the coefficient in
exponential function f 3 as a function of up2pcu gives the value
nd tm'1.30 for p,pc . ~c! P(tmin) for p.pc . Note that for the
values of p simulated, the large tmin behavior is determined by the
finite size of the system—not f 3.
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P8~Rur !;
1

rm S R

rmD 2gR8

f 1S R

rmD f 2S R

LmD f 3S R

jmD , ~61!

with the exponent m playing the role of the resistance fractal
dimension and the exponent gR8'2.3 obeying the relation

m~gR821 !5dmin~g l8 21 !. ~62!

We tested the scaling ansatz ~61! numerically and found
agreement with our theoretical predictions.

In industrial applications, it is very important to predict
the time of the breakthrough of the injected fluids into the
production well @28#. Since the pressure and the flow are
known immediately as the operation of the well begins, one
can predict tmin using the relationship ~60!.

Up to now, we have considered the breakthrough time
distribution for the case of a fixed injection rate J5const.
Another practical application is related to the distribution of
breakthrough time at a constant pressure difference PA
2PB5const. For each configuration of the porous medium
with resistance R, the minimal traveling time at constant
pressure, t̂ min , is related to the minimal traveling time tmin at
constant flow as

t̂ min5Rtmin . ~63!

Using Eqs. ~60! and ~63! we conclude that the distribution of
t̂ min should obey the same scaling ansatz ~38! in which tmin is
replaced by t̂ min and exponents d tm and g tm8 are replaced by
exponents d tmp5d tm1m'2.3 and g tmp8 5(g tm8

21)(d tm /d tmp)11'1.57, respectively. We tested the scal-
ing ansatz ~38! for t̂ min numerically and found agreement
between the numerically determined values of d tmp and g tmp8

and our theoretical predictions.

IV. CONCLUSIONS

By modeling porous media using bond percolation and
concepts of percolation theory, we study the flow of fluid in
porous media in two and three dimensions between two
‘‘wells’’ separated by Euclidean distance r. We investigate
the distribution function of the shortest path connecting the
two sites, and propose a scaling ansatz that accounts for the
dependence of this distribution ~i! on L, the size of the sys-
tem, and ~ii! on p, the bond occupancy probability. We con-
firm by extensive simulations that the ansatz holds for d
52,3, and we calculate the relevant scaling parameters.

In order to understand the properties of the flow of oil
displaced by fluid or gas, we study the dynamics of flow on
percolation clusters. We study two dynamical quantities: the
minimal traveling time and the length of the path corre-
sponding to the minimal traveling time. Because of the ap-
proximate parallel between the shortest path and the minimal
traveling time of flow, the study of the shortest path is the
first step in understanding the properties of oil fields. In par-
ticular, a scaling ansatz for these dynamical quantities in-
cludes the effect of finite system size and off-critical bond
occupation probability. We find that the scaling form for the
distribution functions for these dynamical quantities for d
52,3 is similar to, but not identical to, that for the shortest
path. In addition to calculating the relevant distribution func-
tions and scaling relations, we determine the constants and
exponents which characterize these relations ~see Table I!.
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TABLE I. Summary of exponents and coefficients in scaling form P(xur)
;(1/rdx)(x/rdx)2gx f 1(x/rdx) f 2(x/Ldx) f 3(x/jdx), where f 1(y)5exp(2axy

2fx), f 2(y)5exp(2bxy
cx), f 3(y)

5exp(2cxy). Here x denotes one of the quantities l or tmin . The notation N/A means not applicable ~since
no theoretical value exists!, while the notation (1/2) indicates above or below pc .

x l tmin

exponent Simulation Theory Simulation Theory

d52
dx 1.1360.01 N/A 1.3360.05 N/A
gx8 2.1460.02 2.11 2.060.1 N/A
ax 0.5 N/A 1.1 N/A
fx 7.360.5 1/(dx21)57.69 3.0 3.0
bx 3.5 N/A 5.0 N/A
cx 4.060.5 N/A 3.0 N/A
cx 2.4(2),3.7(1) N/A 1.6(2),2.6(1) N/A

d53
dx 1.3960.05 N/A 1.4560.10 N/A
gx8 2.360.1 2.23 2.160.1 N/A
ax 1.4 N/A 2.5 N/A
fx 2.160.5 1/(dx21)52.56 1.6 2.0
bx 2.0 N/A 2.3 N/A
cx 2.560.5 N/A 2.0 N/A
cx 3.1(2) N/A 2.9(2) N/A
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