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Dynamics of viscous penetration in percolation porous media
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We investigate the dynamics of viscous penetration in two-dimensional percolation networks at criticality
for the case in which the ratio between the viscosities of displaced and injected fluids is very large. We report
extensive numerical simulations that indicate that the scaling exponents for the breakthrough time distribution
are the same as the previously reported values computed for the case of unit viscosity ratio. Our results are
consistent with the possibility that viscous displacement through critical percolation networks constitutes a
single universality class, independent of the viscosity ratio. We also find that the distributions of mass and
breakthrough time of the invaded clusters have the same scaling form, but with different critical exponents.
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I. INTRODUCTION

The interesting physics related to the displacement phe-
nomenon of a viscous fluid by a less viscous one inside a
porous material has been the subject of intensive research in
the past and in recent years, in particular due to its close
connections with hydrology and oil recovery [1,2]. These
studies have been fairly successful in describing the complex
geometrical features of the displacement structures in terms
of statistical mechanical models, such as invasion percola-
tion (IP), viscous fingering (VF), and diffusion-limited ag-
gregation (DLA) [3-6]. More recent works on this subject
have been motivated by the rich variety of intriguing phe-
nomena that the invasion process can display, such as ava-
lanches and flux front roughening [7,8]. All these studies
unambiguously indicate that the morphological characteris-
tics of objects generated during the displacement process
(e.g., the invading cluster or the penetration front) should be
strongly dependent on the physicochemical and operational
properties of the flow.

Just at the critical point, the incipient infinite percolation
cluster [9,10] is an example of a random fractal that has been
extensively used as a convenient paradigm for real disor-
dered systems. An obvious advantage of using the percola-
tion model is that a comprehensive set of exactly and nu-
merically calculated critical exponents is now available to
describe most of its geometrical and transport features. In
addition, it is well established that the electrical transport in
disordered media with a broad distribution of conductance
values is dominated by those regions where the conductances
are larger than some critical value [11]. This value is the
largest conductance such that the set of conductances above
this threshold still preserves the global connectivity of the
system. In percolation terminology, this is equivalent to
working with the conducting spanning cluster. Known as
““the critical path method,’’ this powerful approximation has
been successfully applied [12] to estimate transport proper-
ties (e.g., permeability and electrical conductivity) of disor-
dered porous materials.

Only a few studies have been devoted to the investigation
of the displacement process through percolation porous me-
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dia at criticality. Murat and Aharony [13] showed by nu-
merical simulation with two-dimensional diluted percolation
lattices that, although the clusters generated from VF and
DLA have the same fractal dimension at the vicinity of the
critical point, many other geometrical differences can be ob-
served between these two processes. In two recent studies
[14,15], the dynamics of viscous displacement through per-
colation porous media has been investigated in the limiting
condition of unitary viscosity ratio, m=u,/u,=1, where
mp and w, are the viscosities of the injected and displaced
fluids, respectively. In this situation, the displacement front
can be approximately modeled by tracer particles that follow
the streamlines of the flow. As a result, it was shown that the
distributions of the shortest path and minimal traveling time
of the tracer closely obey a proposed scaling ansatz [16,17]
that can account for both the effect on L—the finite size of
the system—and on p, the bond occupancy probability.

The main purpose of the present study is to investigate the
detailed dynamics of viscous penetration through two-
dimensional (2D) critical percolation networks in the limit-
ing case of a very large viscosity ratio, m—oo. The organi-
zation of the paper is as follows. In Sec. I, we present the
characteristics of the theoretical model and related param-
eters. The results are shown and discussed in Sec. 1l and the
concluding remarks are then presented in Sec. IV.

1. MODEL FORMULATION

The porous media is modeled here by bond percolation on
a square lattice with sites that have negligible volume and
bonds that are cylindrical tubes of fixed length /", and radius
r,. We consider the percolation backbone generated at the
critical point between two sites (“‘wells’”) W, and W, sepa-
rated by a fixed distance r (see Fig. 1). As a macroscopic
boundary condition, a constant pressure drop Ap=pw:
— pw2 is imposed between the injecting (W;) and extracting
wells (W,) during the dynamics. For simplicity, we consider
here the case in which capillary forces are locally negligible
in the system. This is analogous to assuming that the inter-
facial pressure drop between fluids is negligible at each pore
[3]. In addition, the tubes connecting the sites are sufficiently
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FIG. 1. Pictoria representation of the viscous penetration pro-
cess in atypica percolation network of pores. A constant pressure
drop Ap is applied between the points W, and W, separated by the
distancer. At initia time, the entire network is filled with a fluid of
finite viscosity (displaced fluid). The invading fluid of zero viscos-
ity penetrates through W, and reaches W, at the breakthrough time
ty . Thethin lines correspond to pores filled with the displaced fluid,
while the thick lines are the pores filled with the invading fluid at
t= tb .

long, 7/ p>r,, to assume that the flow between nodesi and j
at the pore scale follows Hagen-Poiseuille's law,
e

qijzsﬂ(/‘—pixij)(pi_pj):gij(pi_pj)- 1)

Here p; is the pressure at node i, q;; is the volumetric flow
rate between nodes i and j, g;; is the hydraulic conductance
of the pore, and w isthe viscosity of the displaced fluid. The
local variable x;j, 0<xj;</, is a time-dependent length
that corresponds to the part of the pore that is filled with the
displacing fluid during the penetration process. Mass conser-
vation at each node of the lattice leads to the following set of
linear algebraic equations:

; qi,:; gi(pi—p))=0 for i=12,...,N, (2

where N is the number of sites. Note that because gi‘jlzo,
the pressure inside the invaded region must be everywhere
equal to the pressure pyy; applied at the well W,. In order to
simulate the dynamics of viscous invasion, we compute the
local displacement in each pore a the front as Ax;
= qijAtmm/wrS , Where At is the variable time step of the
process, calculated as the minimum value among all the in-
terface pores, necessary for the invading fluid to reach a new
node. Accordingly, we keep updating the front and recalcu-
lating the pressure field until the displacing fluid reaches the
second well W,. At this point, we record the mass M, of the
invaded cluster and the breakthrough time t,,, i.e, the total
time for the invading front to move from W, to W,. For a
fixed value of r, this operation is repeated for 10 000 network
realizations of size LXL, where L=500>r. We run these
simulations for different values of r and find that there is
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FIG. 2. Logarithmic plot of the distribution of mass of invaded
clusters P(M,,) for different distances r =4,8,16,32,64 between in-
jection (W;) and extraction (W,) points. The inset shows the col-
lapsed data obtained by rescaling the mass M, with its correspond-
ing characteristic value M ~r13L, The least-square fit to the datain
the scaling region gives gy, = 2.00=0.04.

always a well-defined region where the distributions of My,
and t,, follow the scaling form [16]

—9z

P(z)=A, f

z
—) : )

z* z*

where z denotes My, or t,,, z* is the maximum of the prob-
ability distribution, the normalization constant is given by
A,~(z*) "1, and the scaling function has the form [14,15]

fy)=exp(—ay~ %2). 4

The exponents ¢, and d, are related by

®)

Note that the scaling function f decreases sharply when z is
smaller than z*. The lower cutoff is due to the fact that the
mass M, cannot be smaller than the mass of invading fluid
filling a single straight tube of radiusr, and length r.

1. RESULTS AND DISCUSSION

In Figs. 2 and 3, we show the log-log plots of the distri-
butions P(M,) and P(t,,), respectively, for five different val-
ues of the well distance: r=4, 8, 16, 32, and 64. For each
curve, we determine the characteristic size z* as the peak of
the distribution and plot z* versus the distance r in double-
logarithmic scale. As shown in Fig. 4, the results of our
simulations indicate that both M} and t} have a power-law
dependence on the distance r, z* ~r%. The linear fit to the
data yields the exponents d, for each distribution, namely

dy,=1.31+0.02 (6)
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FIG. 3. Logarithmic plot of the breakthrough time distribution
P(ty) for r=4,8,16,32,64. The inset shows the collapsed data ob-
tained by rescaling the time t,, with its corresponding characteristic
valuetf ~r2%, The |least-square fit to the data in the scaling region
gives g;=1.54+0.03.

and
d;=2.25+0.03. (7

In particular, the exponent d, is the fractal dimension of the
invaded cluster. It has been previously estimated by Murat
and Aharony [13] using smaller system sizes, a stochastic
type of invasion algorithm, and a different set of boundary
conditions to represent the source and sink of mass. The
obtained value dy=1.30+0.05, however, is in very good
agreement with our result. Paredes and Octavio [18] also
obtained a quite similar result for the structure of the injected
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FIG. 4. Log-log plot of the most probable values for the mass of
invaded clusters M} (circles) and breakthrough time t§ (squares)
versus the distance r. The straight lines are the least-square fits to
the data, with the numbers indicating the slopes, dy=1.31+0.02
(circles) and d;=2.25+0.03 (squares).
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fluid (dy,=1.37) using the invasion percolation model with
trapping in percolating clusters.

The insets of Figs. 2 and 3 show the data collapse ob-
tained by rescaling M, and t, to their characteristic size, M}
and t} , respectively. Both distributions are consistent with
the scaling form of Eq. (3). From the least-square fit to the
data in the scaling regions, we obtain the exponents gy,
=2.00*0.04 and g;=1.54=+0.03. At this point, it is impor-
tant to recall that the breakthrough time exponents reported
in [15] for the specia case m=1 are d;~2.3 and g,~1.57,
computed at constant pressure. Furthermore, note that the
scaling exponents of the invaded cluster mass gy and dy,
also coincide with the exponents for breakthrough time re-
ported in Ref. [15] for m=1 at constant flow. In the case
m= 1, the conductance G of the system is constant over time
and scales with the distance r as G~r ¢, with ~0.975 [9].
The breakthrough time computed at constant flow t,,q coin-
cides with the cluster mass M invaded by the time of the
breakthrough. The breakthrough time at constant pressure is
given by t,,=t,q/G. Accordingly, tbp~rdM*§. Hence one
expects the relationship d;=dy +{. Since the values of t,

and tbq; are strongly correlated with each other, ty,
~th%“‘+ 9 the distributions of both quantities must obey
the relationship

P(tbp)dtbp: P(tbq)dtbq ) 8

from which it follows that

dwm
du+{

9=1+(gu—1) ~1.57. 9

This is in good agreement with the data obtained for m
—oo as well as for the data obtained in Ref. [15] for m=1.
The excellent agreement between the exponents obtained for
the cases m— o0 and m=1 seems to indicate that the process
of viscous penetration in percolation porous media consti-
tutes a single class of universality.

From a practical point of view, it is important to under-
stand the relationship between the dynamical variables My,
and t,,, which in the case m—o is not so simple as in the
case m=1. Here, we explain this by considering that it is
possible to map the statistics over several samples into the
dynamics of viscous penetration of a single but sufficiently
large pore network realization. In this situation, we can al-
ways express the global dynamics of the system in terms of
the following mass baance:

dM
—— =pGAp, (10)

where M is the mass of the invaded cluster at timet, p isthe
density of the invading fluid, taken as constant, and G is the
overall hydraulic conductance of the pore network. At any
time t during the dynamics, the variable G can be calculated
as the conductance of the remaining pore space filled with
defending fluid. Therefore, G should be of the order of the
conductance between the most advanced site in the invading
front and the second well W,. As shown in Fig. 1, this sim-
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FIG. 5. Power-law dependence of t,/ty on My/M} for r=4
(circles), 8 (sguares), 16 (diamonds), 32 (up triangles), and 64
(down triangles). Each abscissa is the average over the M, values
falling within the range of a specified logarithmic bin. The ordinate
isthe average over the corresponding t,, values. The computed error
bars are smaller than the symbols. The solid line with slope 1.80
+0.04 is the least-square fit to al data sets in the scaling region.
The inset shows the power-law behavior of the intrinsic invasion
dynamics in terms of G(t)/G, versus 1—M(t)/M,. These data
have been obtained by averaging the individual time-dependent pro-
cess of penetration over 200, 400, 600, 800, and 1000 redlizations
of 500Xx500 pore networks generated with r=4 (circles), 8
(squares), 16 (diamonds), 32 (triangles up), and 64 (triangles
down), respectively.

ply means that the dynamics of the invasion cluster can be
approximately followed as a sequence of trandations in the
first well W, to points W; located at the front. If we now
make use of the scaling relation G~r ~¢ and assume that the
remaining mass to be filled within the displaced phase is
sufficiently large to obey

(Mp—M)~ru, (11)
it follows that
G~(M,—M) ¢dum, (12)

The substitution of Eqg. (12) into Eq. (10) and integration
over the entire dynamics gives the following scaling behav-
ior between the breakthrough time and mass:

t,~Myp, (13)

where a=({+dy)/dy~1.75 in two dimensions. In Fig. 5,
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we show that the logarithmic dependence of t, on My, for al
values of the distance r used in the simulations can be satis-
factorily represented by a single straight line with slope
equal to 1.80+0.04. A difference smaller than 3% between
predicted and calculated o exponents confirms the validity of
our similarity argument. For consistency, it is important to
show that the basic assumption (12) used to determine the
exponent « isindeed descriptive of the intrinsic dynamics of
viscous invasion. We therefore carried out additional simu-
lations where the entire penetration dynamics of the percola
tion pore space is sampled over severa lattice realizations.
The results displayed in the inset of Fig. 5 show that the
average dynamics of the normalized conductance, G(t)/Gy,
where Go= G(0), follows a power law,

M) ~*#
G(t)/Go~|1———]| , (14)
My
with an exponent
B=0.81=0.03. (15)

This numerically estimated value is also in good agreement
with the theoretical approximation (12), which predicts

B={ldy~0.75. (16)

IV. CONCLUSION

In summary, we found by numerical simulations on 2D
percolation networks at criticality that the scaling ansatz pro-
posed in [16,17] to characterize the dynamics of viscous dis-
placement a& m=1 also holds for the case of very large
viscosity ratio, m— oo, Surprisingly, we found that the distri-
bution exponents g, and d, estimated for these two limiting
cases are statistically identical. Based on this fact, we sug-
gest that the two processes should belong to the same uni-
versality class. Of course, we emphasize that this universal
behavior only applies to percolationlike porous media and
should not be generalized to the structure of other porous
materials. Our results also indicate that the relevant dynami-
cal exponent relating the mass of the displacing cluster and
the breakthrough time can be directly obtained from previ-
ously known exponents by means of a ssmple similarity ar-
gument. We expect these results to be valid also for real
percolation porous media.
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