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Scaling of seismic memory with earthquake size
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It has been observed that discrete earthquake events possess memory, i.e., that events occurring in a particular
location are dependent on the history of that location. We conduct an analysis to see whether continuous real-time
data also display a similar memory and, if so, whether such autocorrelations depend on the size of earthquakes
within close spatiotemporal proximity. We analyze the seismic wave form database recorded by 64 stations
in Japan, including the 2011 “Great East Japan Earthquake,” one of the five most powerful earthquakes ever
recorded, which resulted in a tsunami and devastating nuclear accidents. We explore the question of seismic
memory through use of mean conditional intervals and detrended fluctuation analysis (DFA). We find that the
wave form sign series show power-law anticorrelations while the interval series show power-law correlations. We
find size dependence in earthquake autocorrelations: as the earthquake size increases, both of these correlation
behaviors strengthen. We also find that the DFA scaling exponent o has no dependence on the earthquake

hypocenter depth or epicentral distance.
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I. INTRODUCTION

Many complex physical systems exhibit complex dynamics
in which subunits of the system interact at widely varying
scales of time and space [1,2]. These complex interactions
often generate very noisy output signals which still exhibit
scale-invariant structure. Such complex systems span areas
studied in physiology [3], finance [4], and seismology [5—14].

In seismology, temporal and spatial clustering are con-
sidered important properties of seismic occurrences and,
together with the Omori law (dictating aftershock timing)
and the Gutenberg-Richter law (specifying the distribution
of earthquake size), comprise the main starting requirements
to be fulfilled in any reasonable seismic probabilistic model.
Analyzing the timing of individual earthquakes, the authors of
Ref. [5] introduced the scaling concept to statistical seismol-
ogy. The recurrence times are defined as the time intervals
between consecutive events, t; =t; — t,_;. In the case of
stationary seismicity, the probability density P(r) of the
occurrence times was found to follow a universal scaling law

P(t) = Rf(R7), (1)

where f is a scaling function and R is the rate of seismic
occurrence, defined as the mean number of events with
M > M. [6]. References [7,8] has demonstrated how the
structure of seismic occurrence in time and magnitude can be
treated within the framework of critical phenomena.

The study of seismic waves is both scientifically interesting
and of practical concern, particularly in such applied areas as
engineering. A better understanding of seismic waves is imme-
diately applicable in the design of structures for earthquake-
prone areas [15-17]. It also allows scientists to better un-
derstand the underlying mechanisms that drive earthquakes
[18-23]. The factors that affect the seismic waves include
source, medium, and instrument response, and Refs. [24,25]
show the importance of studying wave forms in the frequency
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domain and the connection between frequency content and
seismic source. Reference [26] indicates the fractal spectrum
structure of random-pulse time series. In Refs. [27,28] the
correlation between the fractal nature of inhomogeneities and
seismic wave propagation is reported. These results are in
agreement with the intriguing hypothesis of the existence of
long-range autocorrelations in seismic waves. Recently, with
development in the measurement technology of seismic waves,
the seismometer has become capable of recording seismic
motion over a very wide frequency range.

Recently, a few papers have analyzed the existence of
correlations between magnitudes of subsequent earthquakes
[7,8]. Analyzing earthquakes with t greater than 30 min,
Ref. [7] reported possible magnitude correlations in the
Southern California catalog. Magnitude correlations have
often been interpreted as a spurious effect due to so-called
short-term aftershock incompleteness [9]. This hypothesis
assumes that some aftershocks, especially small events, are not
reported in the experimental catalogs, which is in agreement
with the standard approach that assumes interdependence of
earthquake magnitudes, implying no memory in earthquakes.

However, recent work has also challenged this interpreta-
tion. The authors of Ref. [10] report the existence of magnitude
clustering in which earthquakes of a given magnitude are more
likely to occur close in time and space to other events of similar
magnitude. They find that a subsequent earthquake tends to
have a magnitude similar to but smaller than the previous
earthquake. Reference [8] also reports the existence of magni-
tude correlations and additionally demonstrates the structure
of these correlations and their relationship to Ar and Ar,
where the latter represents the distance between subsequent
epicenters. In Ref. [12] amodel to explain these magnitude cor-
relations is created. Additionally, Refs. [13] and [14] find that
the distribution of recurrence times strongly depends on the
previous recurrence time, such that small and large recurrence
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times tend to cluster in time. This dependence on the past is
reflected in both the conditional mean recurrence time and the
conditional mean residual time until the next earthquake.

In addition to analyzing the raw wave form, it is also
common to analyze related time series, such as the time
series generated by taking the sign or magnitude of the wave
form [3]. Reference [3] reports an empirical approximate
relation at small time scales for the scaling exponents cal-
culated for the sign, the magnitude, and the original time
series, Osign = (1/2)(amagnitude + aoriginal), in physiology. The
study of magnitude and sign time series is important in
physiology because the magnitude time series exhibits weaker
autocorrelations and a scaling exponent closer to the exponent
of an uncorrelated series when the subject is unhealthy [3].
Diagnostic power in physiology has been confirmed for sign
time series as well—the sign time series of heart failure
subjects exhibit scaling behavior similar to that observed in
the original time series, but significantly different from that of
healthy subjects [3]. Understanding the correlation properties
of these three time series allows us to also understand the
underlying processes generating them.

As stated in Ref. [25], “As in all other branches of geo-
physics, the effects of source and medium are strongly coupled
in seismology. .. The motions recorded in a seismogram are
a result both of propagation effects and of source effects.”
In practice, when we apply a single time-series correlation
method to a given physical output, clearly, we do not take
into account the potential influence of other time series that
may influence the given time series. For instance, many
physical outputs exhibit long-range autocorrelations and they
also cross-correlate with other physical outputs. So the fact
that many physical outputs mutually affect each other does not
prevent us from studying single statistical properties. Here we
test a challenging hypothesis that long-range autocorrelations
exist in seismic waves. We first note that long-range power-law
autocorrelations are quite common in a large number of natural
phenomena, ranging from weather [29—31] and physiological
systems [3,32-35] to financial markets [36—44]. Specifically,
in the latter area, the authors of [45] have investigated the
relationship between financial aftershock memory and the size
of the nearest major event, in close analogy to our work here.

Our investigation and discussion are organized as follows.
First, we study the autocorrelations of interval series by
using the mean conditional technique. Second, we employ
detrended fluctuation analysis (DFA) [46—48] to investigate the
possible existence of long-range autocorrelations in the sign
and interval time series. For the interval time series we find a
positive regression between the DFA scaling exponent o and
earthquake size (measured by the Richter magnitude scale M
or seismic moment M), while for the sign time series we find
an inverted regression between « and earthquake magnitude.
Thus we report that the observed autocorrelation depends on
earthquake size, in both the sign and interval time series. We
also find that the scaling exponent « has no dependence on
hypocenter depth or epicentral distance.

II. DATA

Seismic waves are unique in that they have nonstationarities
of a much larger order than those of any other known natural
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FIG. 1. (Color online) (a) Location map for the 46 broadband
stations of the Full Range Seismograph Network of Japan (F-net)
(red asterisks). Inset: An example of a record of a seismic wave
(up-down component). (b) A part of the coda wave series indicated in
the inset of (a), as an example. (c) An example of a sign time series,
where the positive sign (+1) represents a positive wave form and the
negative sign (—1) represents a negative wave form in coda wave
series of seismic waves. (d) Interval time series (t) of the coda wave
series for a subset of the record shown in (b).

signal. Large earthquakes are characterized by a maximum
amplitude that is often >100 times larger than the mean
amplitude [see Fig. 1]. This is a limitation that makes seismic
waves difficult to analyze using traditional analysis. Although
we might want to use detrended fluctuation analysis [46—49],
originally proposed to study the correlations in a time series
in the presence of nonstationarities commonly observed in
natural phenomena, the level of nonstationarity in earthquakes
is so large that DFA is inappropriate regardless of the order
of the polynomial fit applied [48]. Thus, due to lack of
methods for highly nonstationary signals, we do not analyze
correlations in the series of magnitudes, but instead analyze
the correlations in the sign series [Fig. 1(c)] and interval
series [Fig. 1(d)]. For our data, we use the seismic wave
form database from the National Research Institute for Earth
Science and Disaster Prevention (NIED) F-net (Full Range
Seismograph Network of Japan), which records continuous
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seismic wave form data w; by using broadband sensors in
64 stations in Japan [see Fig. 1(a)]. In our study we select
46 stations (ADM, AOG, ASI, HID, HJO, HRO, IGK, IMG,
INN, IYG, IZH, KGM, KMU, KNM, KNP, KNY, KSK, KSN,
KSR, KYK, MMA, NKG, NOK, NOP, NRW, NSK, OSW,
SAG, SHR, SIB, TANS, TGA, TGW, TKO, TMC, TSA, TYM,
TYS, UMJ, WTR, YAS, YNG, YSI, YTY, YZK, and ZMM),
based on the locations and integrity of the data series. Seismic
signals are recorded in three directions: U (up-down with up
positive), N (north-south with north positive), and E (east-west
with east positive) [20]. We find that the data recorded in those
three directions show very similar memory and scaling rules.
In this paper, we present the quantitative results for each of
those three directions, and the qualitative results only for the
U direction as a representative. Sampling intervals have five
recording frequencies: 80, 20, 1, 0.1, and 0.01 Hz. We study
earthquake coda wave data with a 1 Hz sampling interval
for the year 2003, together with selected earthquake coda
wave data from 11 March 2011. We note that, because of
the interaction between earthquakes, not all earthquakes can
be employed in our analysis (see the Appendix). The data from
11 March 2011 are selected because they contain the notable
2011 Tohoku earthquake (“Great East Japan Earthquake”),
which resulted in the tsunami that caused a number of nuclear
accidents. We also add two large earthquakes (M = 7.3 and
M = 7.6) to our study, which also occurred the same day as
aftershocks.

We employ the following procedure to create our time
series:

(1) For each selected earthquake (see the Appendix) we
create a new time series, the normalized wave form, denoted
by w;, out of the raw seismic acceleration wave form data,

Wnorm = (W; — W)/ th —w. 2

(i1) From the normalized time series wyom We define a new
subseries wy, starting at the time coordinate where maximum
w, occurs and terminating at the end of the normalized wave
form w; [see the inset in Fig. 1(a)].

(iii) Let the time series #; denote the points in time when w),
changes sign, with #; < ;4. We define the interval series by
T =t —ti [Flg 1(0)].

(iv) The sign series is defined by s, = sgn(w)) [Fig. 1(d)].

Note that our definition of interval is different from that
recently defined in several papers, where the return intervals ©
between consecutive fluctuations above a volatility threshold
q in different complex systems have been studied. The
probability density function of return intervals P,(t) scales
with the mean return interval as

P,(t) =7 ' f(z/7), A3)

where f() is a stretched exponential [37-40]. Since, on
average, there is one volatility above the threshold g for every
T, volatilities, then it holds that [43]

/7, %/ P(IRDAIR| = P(IR| > q)~q™". (4
q

For the time intervals T, between events given by fluctuations
R where R > g, Ref. [43] derived that T, the average of 7,
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FIG. 2. (Color online) Scaled mean conditional interval (t|7y)/T
vs 79/T. Five groups, one with no proximal earthquake, and
earthquakes with Richter magnitude scale M < 4.5, M = 4.5-5.5,
M = 6.5-6.5, M > 6.5. An increasing trend implies a short-range
correlation in the interval series.

obeys a scaling law,

T =9", ®)
where « denotes our estimate of the tail exponent probability
density function, P(|R|'**). Similarly, if P(|R|) follows an

exponential function P(|R|) o exp(—p|R]), then employing
Eq. (4) we easily derive

7, x exp(Bq). (6)

Equation (6) can be used for estimation of the exponential
parameter 3.

III. MEMORY OF INTERVAL TIME SERIES

Returning to wave form data, we begin analyzing the series
by studying the conditional mean

(tl70)/7, @)

which gives the mean value of  immediately following a given
term 19, normalized in units of 7. The conditional mean gives
evidence of whether seismic memory exists in the intervals
in the form of correlations or anticorrelations. For example,
should correlations exist, one would expect the mean interval
to be shorter in the window immediately following a small
interval.

Indeed, Fig. 2 shows that the large intervals 7 tend to follow
large initial 7y and small 7 follow small 7y, indicating the
existence of (positive) correlations in the interval time series.
We also note that the autocorrelations tend to be stronger for
the subsets associated with larger earthquakes than for those
associated with smaller earthquakes.

To expand on this we also extend our investigation to longer-
range effects. We investigate the mean interval after a cluster
of n consecutive intervals that are either entirely above the
series mean or entirely below it. We denote clusters that are
entirely above the series mean with a “+4” and clusters below
the series mean with a “—”. Figure 3 shows the mean interval
7 that follows a to(n) defined as a cluster size of n. We find that
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FIG. 3. (Color online) Long-range memory in interval clusters.
7y signifies a cluster of intervals, consisting of n consecutive values
that all are above (denoted as “+”) or below (denoted as “—”) the
median of the entire interval records. Plots display the scaled mean
interval conditioned on a cluster, (t|t) /T, vs the size n of the cluster
for five group intervals. The upper curves are for 4 clusters while
the lower part is for — clusters. The plots show that + clusters are
likely to be followed by large intervals and — clusters by small
intervals, consistent with long-term correlations in interval records.
As in Fig. 2, the long-term correlation increases with earthquake size,
with exceptions for very large earthquakes.

for 4 clusters—shown by open symbols—the mean interval
increases with the size of the cluster n. This is the opposite of
what we find for — clusters—shown as closed symbols. The
results indicate the existence of at least short-term memory in
the interval time series. Furthermore, we find that the mean
interval increases with the seismic magnitude. However, this
relationship breaks at the high end of the Richter magnitude
scale, M > 6.5.

IV. DETRENDED FLUCTUATION ANALYSIS

Many physical, physiological, biological, and social sys-
tems are characterized by complex interactions between a
large number of individual components, which manifest in
scale-invariant correlations [1,2,50,51]. Since the resulting
observable at each moment is the product of a magnitude
and a sign, many recent investigations have focused on
the study of correlations in magnitude and sign time series
[3,4,33,47,52-54]. For example, the time series of changes §t;
of heartbeat intervals [3,33,54], physical activity levels [47],
intratrading times in the stock market [52], and river flux
values [53] all exhibit power-law anticorrelations, while their
magnitudes |57;| are positively correlated. A common means of
finding autocorrelations hidden within a noisy nonstationary
time series is detrended fluctuation analysis [46—48]. In the
DFA method, the time series is partitioned into pieces of
equal size n. For each piece, the local trend is subtracted
and the resulting standard deviation over the entire series
is obtained. In general, the standard deviation F(n) of the
detrended fluctuations depends on n, with smaller n resulting
in trends that more closely match the data. The dependence of
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F on n can generally be represented as a power law such that
F(n) « n®, 3

where « is the scaling exponent—sometimes referred to as the
Hurst exponent—to be obtained empirically. DFA therefore
can conceptually be understood as characterizing the motion
of a random walker whose steps are given by the time series.
F(n) gives the walker’s deviation from the local trend as a
function of the trend window. Because the root mean square
displacement of a walker with no correlations between his
steps scales as ./n, we can expect a time series with no
autocorrelations to yield an o of 0.5. Similarly, long-range
power-law correlations in the signal (i.e., large terms follow
large terms and small terms follow small terms) manifest
as o > 0.5. Power-law anticorrelations within a signal will
result in o < 0.5. Additionally, DFA can be related to the
autocorrelation as follows: if the autocorrelation function C (L)
can be approximated by a power law with exponent y such
that

C(L) x L7, €)
then y is related to « by [46]

arx1-—y/2 (10)

Another reason we employ the DFA method is that it is
appropriate for sign time series [33]. Other techniques for
the detection of correlations in nonstationary time series are
not appropriate for sign time series. Also, because the sign
and interval time series have affine relations, the analysis of
sign will be helpful in understanding the intervals. However,
the DFA gives biased estimates for the power-law exponent
in analysis of anticorrelated series [47], and so in order to
improve the accuracy of analysis, we integrate the time series
before we employ the standard DFA procedure.

For the 2011 Tohoku earthquake, also known as the “Great
East Japan Earthquake,” we present the fluctuation functions
F(n) of the coda wave, measured at the KSN station, as
typical examples of sign and intervals time series (Fig. 4). By
using DFA, we find, for most coda waves after earthquakes,
that the time series of the intervals are consistent with a
power-law correlated behavior o = 0.69, while the sign time
series are consistent with a power-law anticorrelated behavior
(a = 0.32). The results therefore indicate that for the interval
series large increments are more likely to be followed by large
increments and small increments by small increments. These
results are in agreement with the results of the correlation
analysis reported in Sec. III. In contrast, anticorrelations in
the sign time series indicate that positive increments are more
likely to be followed by negative increments and vice versa.

For the entire set of sign time series comprising our
sample we calculate the average DFA scaling exponent o =
0.34 £ 0.09, indicating anticorrelations, and for the interval
time series we calculate the average DFA scaling exponent
o = 0.58 £ 0.08, indicating correlations. For the different
stations measuring the 2011 Tohoku earthquake we find that
for the sign time series, @ = 0.29 £ 0.05 and for the interval
time series, @ = 0.66 £+ 0.07.
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FIG. 4. (Color online) DFA fluctuation function F(n) of 2011
Tohoku earthquake as a function of time scale n [F(n) o n*] for (a)
sign time series [« + 1 = 1.32 (o < 0.5) indicates anticorrelations]
and (b) interval time series [a + 1 =1.69 (ax > 0.5) indicates
correlations].

V. RELATION BETWEEN EARTHQUAKE MOMENTS
AND SCALING EXPONENTS OF SIGN
AND INTERVAL SERIES

Because large earthquake events release such extraordinary
amounts of energy, it is reasonable to ask whether their
occurrence influences local wave dynamics. To this end, we
study interval time series of coda waves from earthquakes
occurring in 2003, also including the particularly large events
of 11 March 2011, when three events with M > 7 occurred in
the same day. Figure 5(a) shows the DFA scaling exponent of
the sign series versus the seismic moment, where the seismic
moment is a quantity used to measure the size of an earthquake.
We find a decreasing functional dependence between the
DFA exponent of the sign series and the seismic moment of
the proximal earthquake, with slope —0.028 £ 0.002 (slope
—0.042 £ 0.003 for the N direction and slope —0.033 £ 0.003
for the E direction) indicating that the DFA exponent decreases
with increasing seismic moment. Note that because most of
the exponents are below 0.5, this indicates the presence of
ever stronger anticorrelations in the time series as earthquake
magnitude increases. Note, however, that the data break from
this trend for very large earthquakes (Richter magnitude scale
>6.6 or seismic moment >10').

We also find similar results in the interval series, the
difference being that the anticorrelations become correlations.
Figure 5(b) shows that the DFA interval exponent and seismic
moment exhibit a positive functional dependence with slope
0.025 4+ 0.002 (slope 0.022 £ 0.002 for the N direction and
slope —0.020 £ 0.002 for the E direction) so that the DFA
exponent increases with increasing seismic moment. Because
most of the exponents for the interval series are greater than
0.5, this indicates that the series show stronger correlations for
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FIG. 5. (Color online) Scaling exponent @ vs seismic moment
(Richter magnitude scale) for (a) sign time series (correlation
coefficient p = —0.3604), and (b) interval time series (correlation
coefficient p = 0.3602). Inset: Scaling exponent « Vs seismic
moment of data in N (north-south with north positive) and E
(east-west with east positive) directions. The values of o show
negative slope in the regression « vs seismic moment of the sign
series, and positive slope in the regression of the interval series.
Triangular symbols show the mean of the exponent within each
bin (bins: <1 x 10,1 x 10 =1 x 10'%, 1 x 10'°—1 x 10", 1 x
107 -1 x 10", 1 x 10" -1 x 10,1 x 10" =1 x 10%°, 1 x 10% -
1 x 10!, >1 x 10?'); the error bar shows the & standard deviation.
The plots show a linear relationship between the logarithmic
earthquake moment and the scaling exponent « in the sign and
interval series, with exceptions for very large earthquakes.

increasing seismic moment. Again, as with the sign series, we
find a deviation from this trend for very large earthquakes.
Having observed the influence of seismic moment on
autocorrelations, we now investigate whether other readily
observable factors such as hypocenter depth and epicentral
distance (the distance from the event to the recording station)
also contribute. Specifically, we would like to explore whether
there is evidence that such long-term memory is affected by the
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FIG. 6. (Color online) Scaling exponent « vs hypocenter depth for events where the Richter magnitude scale M < 5 for (a) sign time series
and (b) interval time series. Inset: scaling exponent o vs hypocenter depth requiring that the Richter magnitude scale M > 5. (c),(d) Scaling
exponent « vs epicentral distance for events where the Richter magnitude scale M < 5 for (c) sign time series and (d) interval time series. Inset:
scaling exponent « vs epicentral distance requiring that the Richter magnitude scale M > 5. All absolute values of the correlation coefficient
p are smaller than 0.1, showing that « is uncorrelated with both hypocenter depth and epicentral distance.

spreading process as seismic waves disseminate outward from
their epicenter to a recording station, or whether the memory
observed is strictly due to the seismic activity. Figure 6 shows
that the DFA exponents for both interval and sign series are
independent of both hypocenter depth and epicentral distance.
From these results we speculate that the DFA exponent is
mainly a result of the characteristics of the hypocenter rather
than of the process by which the seismic waves are spread.
For moderately large earthquakes (M, = 10'* ~ 10'%), we
approximate the relation between the DFA scaling exponent
and the seismic moment through the empirical formula
a ~ alogjo(Mo) + c, (11
where a = —0.028, ¢ =0.797 (N direction, a = —0.041,
¢ = 1.096; E direction, a = —0.033, ¢ = 0.946) for the sign
time series and where a = 0.025, ¢ = 0.174 (N direction,
a = 0.022, ¢ = 0.221; E direction, a = 0.020, ¢ = 0.25) for
the interval time series. Since

M = [log1o(My) — 9.1]/1.5, (12)
we can also write
a~a(lSM+9.)+c=aM+c. (13)

For example, in the U direction we obtain a’ = —0.042, ¢’ =
0.542 for the sign series, and a’ = 0.037, ¢/ = 0.398 for the
interval series.

We note that similar size dependence in the Hurst exponent
was found in Ref. [55], where the Hurst exponents of financial
time series increase logarithmically with company size.

VI. SUMMARY

We analyze seismic coda waves during earthquakes, finding
long-range autocorrelations in both the interval and sign time
series. The sign series generally display power-law anticorre-
lated behavior, with anticorrelations becoming stronger with
larger earthquake events, while the interval series generally
display power-law correlated behavior, with correlations also
becoming stronger with larger earthquake events. We also
show that while the DFA autocorrelation exponent is influ-
enced by the size of the earthquake seismic moment, it is
unaffected by earthquake depth or epicentral distance.

The factors that affect the seismic waves include source,
medium, and instrument response. In this study, we use
the database from a wide area (the global area of Japan);
moreover, the broadband seismometer sensors have equivalent
performance and response characteristics [20]. So we may
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ignore the influence of instrumental response and assume that
the wave forms are affected only by the medium and the source.
In the empirical analysis of seismic waves, the impacts from
media that work on the wave form are complex and difficult to
measure. Fortunately, from our statistical analysis results, we
can conclude that the power-law correlation or anticorrelation
of the autocorrelation function, which is described as a
DFA scaling exponent empirically, has no dependence on
earthquake hypocenter depth or epicentral distance. These
results indicate that the impact of the medium on the wave form
may be considered as negligible, at least when the records are
taken from a large area and over a long period of time. In other
words, in our quantitative analysis of the power-law correlation
or anticorrelation of autocorrelation functions, we can assume
that the significant influences are all from the source, in the
form of the earthquake size.

Seismologists usually consider the source spectrum, the
attenuation laws, and the instrument response to be the
primary three factors which affect the wave form of seismic
waves. Additionally, in theory, the power spectral density
function and power-law autocorrelation of a real, stationary
signal can be calculated from each other [36]. For these
reasons we can assume that the long-term memory of sign
and interval time series of seismic waves will be strongly
related to the source spectrum. From the seismic wave models
that refer to the source spectrum, we can infer some fractal
characteristics [24,25]. Because there is a lack of methods for
the empirical evaluation of the spectral frequency function
of seismic waves—waves which are highly nonstationary
and may be affected by many factors—researchers usually
make theoretical models and hypotheses to match the spectral
frequency function. On the other hand, in physics and
economics, researchers are more likely to analyze the time
domain characteristics of the signals, using analyses such as the
autocorrelation function and power-law long-term memory,
described by the Hurst exponent. However, in the latter fields,
some physical models are also applied to analyze seismic wave
forms, such as the locally stationary autoregressive and varying
coefficient autoregressive models [56—58].

In this paper, we employed statistical physical methods
to investigate the long-term memory in sign and interval
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time series. Our findings are in contrast with the standard
approach, which assumes independence in earthquake signals,
and thus have strong implications for the ongoing debate about
earthquake predictability [59].
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APPENDIX: THE SELECTION OF EARTHQUAKES

In some regions it is common for multiple earthquakes
to occur in short succession. In many cases, because the
interoccurrence times are so short, the coda waves can be
derived from more than one earthquake. This is especially
true for large earthquakes with many aftershocks [24]. In
order to make sure that the coda waves we study are the
effects of only one earthquake, we need a way of determining
which earthquakes are independent. We use the following two
functions to determine the sphere of influence and duration
of each earthquake by using the Richter magnitude scale
M [24]. We select only those earthquakes that have no larger
earthquake in their spatiotemporal sphere of influence, such
that

t A~ 10(M—4.71)/1467 (Al)

and

R~2 x 10(M+l.0)/2.7, (A2)

where 7 is the duration and R is the sphere radius of influence.
The two functions are empirical formulas based on an analysis
of earthquakes in Japan [24]. 10+19/2.7 is an empirical
formula that indicates the maximum radius over which a
human can feel an earthquake, especially for the earthquakes
in Japan.
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